cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A223269 T(n,k)=Rolling cube face footprints: number of nXk 0..5 arrays starting with 0 where 0..5 label faces of a cube and every array movement to a horizontal, diagonal or antidiagonal neighbor moves across a corresponding cube edge.

Original entry on oeis.org

1, 4, 6, 16, 48, 36, 64, 576, 576, 216, 256, 6144, 20992, 6912, 1296, 1024, 67584, 622592, 765952, 82944, 7776, 4096, 737280, 19726336, 63438848, 27951104, 995328, 46656, 16384, 8060928, 611319808, 5889851392, 6467616768, 1020002304, 11943936
Offset: 1

Views

Author

R. H. Hardin Mar 19 2013

Keywords

Comments

Table starts
....1......4.........16...........64.............256...............1024
....6.....48........576.........6144...........67584.............737280
...36....576......20992.......622592........19726336..........611319808
..216...6912.....765952.....63438848......5889851392.......522106961920
.1296..82944...27951104...6467616768...1771674009600....450204914417664
.7776.995328.1020002304.659411697664.534392715870208.389343801904201728

Examples

			Some solutions for n=3 k=4
..0..3..1..2....0..1..0..1....0..4..5..1....0..4..2..4....0..2..1..3
..0..2..4..3....0..3..5..1....0..4..0..3....0..1..0..4....0..3..4..2
..4..2..1..2....0..2..0..1....3..1..5..4....3..4..0..1....0..3..4..0
Face neighbors:
0.->.1.2.3.4
1.->.0.2.3.5
2.->.0.1.4.5
3.->.0.1.4.5
4.->.0.3.2.5
5.->.1.3.4.2
		

Crossrefs

Column 1 is A000400(n-1)
Column 2 is 4*12^(n-1)
Column 3 is A223197
Row 1 is A000302(n-1)

Formula

Empirical for column k:
k=1: a(n) = 6*a(n-1)
k=2: a(n) = 12*a(n-1)
k=3: a(n) = 40*a(n-1) -128*a(n-2)
k=4: a(n) = 112*a(n-1) -1024*a(n-2)
k=5: [order 6]
k=6: [order 9]
k=7: [order 19]
Empirical for row n:
n=1: a(n) = 4*a(n-1)
n=2: a(n) = 8*a(n-1) +32*a(n-2)
n=3: a(n) = 24*a(n-1) +256*a(n-2) -1024*a(n-3) for n>4
n=4: [order 6] for n>7
n=5: [order 10] for n>11
n=6: [order 23] for n>24