cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A223279 Rolling icosahedron face footprints: number of n X 5 0..19 arrays starting with 0 where 0..19 label faces of an icosahedron and every array movement to a horizontal, diagonal or antidiagonal neighbor moves across an icosahedral edge.

Original entry on oeis.org

81, 1575, 38457, 1024071, 28271577, 792881031, 22392745881, 634400697159, 17998034165721, 510923724667143, 14507984391789081, 412013548109024967, 11701449873880124505, 332336795068373382279, 9438910778776181239449
Offset: 1

Views

Author

R. H. Hardin, Mar 19 2013

Keywords

Comments

Column 5 of A223282.

Examples

			Some solutions for n=3:
  0 1 0 1 4     0 1 0 5 9     0 5 0 2 0     0 1 4 1 6
  6 1 0 1 0     0 5 0 5 7     0 5 0 2 8     4 1 4 1 4
  0 1 0 1 6     9 5 0 5 9     9 5 0 2 3     6 1 6 1 6
Face neighbors:
   0 ->  1  2  5
   1 ->  0  4  6
   2 ->  0  3  8
   3 ->  2  4 16
   4 ->  3  1 17
   5 ->  0  7  9
   6 ->  1  7 10
   7 ->  6  5 11
   8 ->  2  9 13
   9 ->  8  5 14
  10 ->  6 12 17
  11 ->  7 12 14
  12 -> 11 10 19
  13 ->  8 15 16
  14 ->  9 11 15
  15 -> 14 13 19
  16 ->  3 13 18
  17 ->  4 10 18
  18 -> 16 17 19
  19 -> 15 18 12
		

Crossrefs

Cf. A223282.

Formula

Empirical: a(n) = 45*a(n-1) - 518*a(n-2) + 1268*a(n-3) + 1704*a(n-4) - 4064*a(n-5) + 1536*a(n-6).
Empirical g.f.: 3*x*(9 - 68*x + 64*x^2)*(3 - 54*x - 76*x^2 + 56*x^3) / (1 - 45*x + 518*x^2 - 1268*x^3 - 1704*x^4 + 4064*x^5 - 1536*x^6). - Colin Barker, Aug 18 2018