A223282 T(n,k)=Rolling icosahedron face footprints: number of nXk 0..19 arrays starting with 0 where 0..19 label faces of an icosahedron and every array movement to a horizontal, diagonal or antidiagonal neighbor moves across an icosahedral edge.
1, 3, 20, 9, 15, 400, 27, 87, 75, 8000, 81, 351, 849, 375, 160000, 243, 1575, 4995, 8295, 1875, 3200000, 729, 6831, 38457, 72279, 81057, 9375, 64000000, 2187, 29943, 261819, 1024071, 1048923, 792087, 46875, 1280000000, 6561, 130815, 1881441, 10979127
Offset: 1
Examples
Some solutions for n=3 k=4 ..0..5..0..5....0..5..0..5....0..5..0..5....0..2..0..2....0..5..7..5 ..0..2..0..5....0..2..0..5....0..5..0..1....0..2..0..2....7..5..0..5 ..8..2..0..2....3..2..0..1....0..2..0..2....0..5..0..2....9..5..0..2 Face neighbors: 0 -> 1 2 5 1 -> 0 4 6 2 -> 0 3 8 3 -> 2 4 16 4 -> 3 1 17 5 -> 0 7 9 6 -> 1 7 10 7 -> 6 5 11 8 -> 2 9 13 9 -> 8 5 14 10 -> 6 12 17 11 -> 7 12 14 12 -> 11 10 19 13 -> 8 15 16 14 -> 9 11 15 15 -> 14 13 19 16 -> 3 13 18 17 -> 4 10 18 18 -> 16 17 19 19 -> 15 18 12
Links
- R. H. Hardin, Table of n, a(n) for n = 1..161
Formula
Empirical for column k:
k=1: a(n) = 20*a(n-1)
k=2: a(n) = 5*a(n-1)
k=3: a(n) = 11*a(n-1) -12*a(n-2)
k=4: a(n) = 17*a(n-1) -36*a(n-2)
k=5: a(n) = 45*a(n-1) -518*a(n-2) +1268*a(n-3) +1704*a(n-4) -4064*a(n-5) +1536*a(n-6)
k=6: [order 9]
k=7: [order 20]
Empirical for row n:
n=1: a(n) = 3*a(n-1)
n=2: a(n) = 3*a(n-1) +6*a(n-2) for n>3
n=3: a(n) = 5*a(n-1) +18*a(n-2) -24*a(n-3) for n>4
n=4: a(n) = 5*a(n-1) +92*a(n-2) -56*a(n-3) -920*a(n-4) +192*a(n-5) +1152*a(n-6) for n>7
n=5: [order 12] for n>13
n=6: [order 26] for n>27
Comments