cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A223282 T(n,k)=Rolling icosahedron face footprints: number of nXk 0..19 arrays starting with 0 where 0..19 label faces of an icosahedron and every array movement to a horizontal, diagonal or antidiagonal neighbor moves across an icosahedral edge.

Original entry on oeis.org

1, 3, 20, 9, 15, 400, 27, 87, 75, 8000, 81, 351, 849, 375, 160000, 243, 1575, 4995, 8295, 1875, 3200000, 729, 6831, 38457, 72279, 81057, 9375, 64000000, 2187, 29943, 261819, 1024071, 1048923, 792087, 46875, 1280000000, 6561, 130815, 1881441, 10979127
Offset: 1

Views

Author

R. H. Hardin Mar 19 2013

Keywords

Comments

Table starts
............1.......3..........9...........27..............81...............243
...........20......15.........87..........351............1575..............6831
..........400......75........849.........4995...........38457............261819
.........8000.....375.......8295........72279.........1024071..........10979127
.......160000....1875......81057......1048923........28271577.........473368227
......3200000....9375.....792087.....15229647.......792881031.......20570223999
.....64000000...46875....7740273....221142771.....22392745881......895927195659
...1280000000..234375...75637959...3211159815....634400697159....39047604482055
..25600000000.1171875..739134273..46628577099..17998034165721..1702160040384051
.512000000000.5859375.7222821495.677084057343.510923724667143.74204651599582287

Examples

			Some solutions for n=3 k=4
..0..5..0..5....0..5..0..5....0..5..0..5....0..2..0..2....0..5..7..5
..0..2..0..5....0..2..0..5....0..5..0..1....0..2..0..2....7..5..0..5
..8..2..0..2....3..2..0..1....0..2..0..2....0..5..0..2....9..5..0..2
Face neighbors:
0 -> 1 2 5
1 -> 0 4 6
2 -> 0 3 8
3 -> 2 4 16
4 -> 3 1 17
5 -> 0 7 9
6 -> 1 7 10
7 -> 6 5 11
8 -> 2 9 13
9 -> 8 5 14
10 -> 6 12 17
11 -> 7 12 14
12 -> 11 10 19
13 -> 8 15 16
14 -> 9 11 15
15 -> 14 13 19
16 -> 3 13 18
17 -> 4 10 18
18 -> 16 17 19
19 -> 15 18 12
		

Crossrefs

Column 1 is A009964(n-1)
Column 2 is A005053
Row 1 is A000244(n-1)

Formula

Empirical for column k:
k=1: a(n) = 20*a(n-1)
k=2: a(n) = 5*a(n-1)
k=3: a(n) = 11*a(n-1) -12*a(n-2)
k=4: a(n) = 17*a(n-1) -36*a(n-2)
k=5: a(n) = 45*a(n-1) -518*a(n-2) +1268*a(n-3) +1704*a(n-4) -4064*a(n-5) +1536*a(n-6)
k=6: [order 9]
k=7: [order 20]
Empirical for row n:
n=1: a(n) = 3*a(n-1)
n=2: a(n) = 3*a(n-1) +6*a(n-2) for n>3
n=3: a(n) = 5*a(n-1) +18*a(n-2) -24*a(n-3) for n>4
n=4: a(n) = 5*a(n-1) +92*a(n-2) -56*a(n-3) -920*a(n-4) +192*a(n-5) +1152*a(n-6) for n>7
n=5: [order 12] for n>13
n=6: [order 26] for n>27