cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A223277 Rolling icosahedron face footprints: number of n X 3 0..19 arrays starting with 0 where 0..19 label faces of an icosahedron and every array movement to a horizontal, diagonal or antidiagonal neighbor moves across an icosahedral edge.

Original entry on oeis.org

9, 87, 849, 8295, 81057, 792087, 7740273, 75637959, 739134273, 7222821495, 70581425169, 689721818919, 6739962906081, 65862930139863, 643612676665521, 6289384281642375, 61459874978079873, 600586013379170103
Offset: 1

Views

Author

R. H. Hardin, Mar 19 2013

Keywords

Comments

Column 3 of A223282.

Examples

			Some solutions for n=3:
..0..2..3....0..2..3....0..1..4....0..5..9....0..1..6....0..2..0....0..5..9
..0..2..3....8..2..3....0..1..4....0..5..0....0..1..0....3..2..8....9..5..9
..0..2..8....0..2..8....0..1..4....0..1..0....4..1..4....3..2..8....0..5..7
Face neighbors:
0 -> 1 2 5
1 -> 0 4 6
2 -> 0 3 8
3 -> 2 4 16
4 -> 3 1 17
5 -> 0 7 9
6 -> 1 7 10
7 -> 6 5 11
8 -> 2 9 13
9 -> 8 5 14
10 -> 6 12 17
11 -> 7 12 14
12 -> 11 10 19
13 -> 8 15 16
14 -> 9 11 15
15 -> 14 13 19
16 -> 3 13 18
17 -> 4 10 18
18 -> 16 17 19
19 -> 15 18 12
		

Crossrefs

Cf. A223282.

Formula

Empirical: a(n) = 11*a(n-1) - 12*a(n-2).
Conjectures from Colin Barker, Aug 18 2018: (Start)
G.f.: 3*x*(3 - 4*x) / (1 - 11*x + 12*x^2).
a(n) = (2^(-1-n)*((11-sqrt(73))^n*(-7+sqrt(73)) + (7+sqrt(73))*(11+sqrt(73))^n)) / sqrt(73).
(End)

A223278 Rolling icosahedron face footprints: number of n X 4 0..19 arrays starting with 0 where 0..19 label faces of an icosahedron and every array movement to a horizontal, diagonal or antidiagonal neighbor moves across an icosahedral edge.

Original entry on oeis.org

27, 351, 4995, 72279, 1048923, 15229647, 221142771, 3211159815, 46628577099, 677084057343, 9831800199267, 142765577323191, 2073070007320635, 30102629340815919, 437114178530327763, 6347246378746198887
Offset: 1

Views

Author

R. H. Hardin, Mar 19 2013

Keywords

Comments

Column 4 of A223282.

Examples

			Some solutions for n=3:
..0..2..3.16....0..2..0..1....0..1..0..1....0..2..0..1....0..5..0..1
..8..2..3..2....0..5..0..1....4..1..4..1....0..1..0..5....0..2..0..1
..3..2..3.16....7..5..0..5....4..1..6..1....4..1..0..5....3..2..0..5
Face neighbors:
0 -> 1 2 5
1 -> 0 4 6
2 -> 0 3 8
3 -> 2 4 16
4 -> 3 1 17
5 -> 0 7 9
6 -> 1 7 10
7 -> 6 5 11
8 -> 2 9 13
9 -> 8 5 14
10 -> 6 12 17
11 -> 7 12 14
12 -> 11 10 19
13 -> 8 15 16
14 -> 9 11 15
15 -> 14 13 19
16 -> 3 13 18
17 -> 4 10 18
18 -> 16 17 19
19 -> 15 18 12
		

Crossrefs

Cf. A223282.

Formula

Empirical: a(n) = 17*a(n-1) - 36*a(n-2).
Conjectures from Colin Barker, Aug 18 2018: (Start)
G.f.: 27*x*(1 - 4*x) / (1 - 17*x + 36*x^2).
a(n) = (3*2^(-1-n)*((17-sqrt(145))^n*(-1+sqrt(145)) + (1+sqrt(145))*(17+sqrt(145))^n)) / sqrt(145).
(End)

A223279 Rolling icosahedron face footprints: number of n X 5 0..19 arrays starting with 0 where 0..19 label faces of an icosahedron and every array movement to a horizontal, diagonal or antidiagonal neighbor moves across an icosahedral edge.

Original entry on oeis.org

81, 1575, 38457, 1024071, 28271577, 792881031, 22392745881, 634400697159, 17998034165721, 510923724667143, 14507984391789081, 412013548109024967, 11701449873880124505, 332336795068373382279, 9438910778776181239449
Offset: 1

Views

Author

R. H. Hardin, Mar 19 2013

Keywords

Comments

Column 5 of A223282.

Examples

			Some solutions for n=3:
  0 1 0 1 4     0 1 0 5 9     0 5 0 2 0     0 1 4 1 6
  6 1 0 1 0     0 5 0 5 7     0 5 0 2 8     4 1 4 1 4
  0 1 0 1 6     9 5 0 5 9     9 5 0 2 3     6 1 6 1 6
Face neighbors:
   0 ->  1  2  5
   1 ->  0  4  6
   2 ->  0  3  8
   3 ->  2  4 16
   4 ->  3  1 17
   5 ->  0  7  9
   6 ->  1  7 10
   7 ->  6  5 11
   8 ->  2  9 13
   9 ->  8  5 14
  10 ->  6 12 17
  11 ->  7 12 14
  12 -> 11 10 19
  13 ->  8 15 16
  14 ->  9 11 15
  15 -> 14 13 19
  16 ->  3 13 18
  17 ->  4 10 18
  18 -> 16 17 19
  19 -> 15 18 12
		

Crossrefs

Cf. A223282.

Formula

Empirical: a(n) = 45*a(n-1) - 518*a(n-2) + 1268*a(n-3) + 1704*a(n-4) - 4064*a(n-5) + 1536*a(n-6).
Empirical g.f.: 3*x*(9 - 68*x + 64*x^2)*(3 - 54*x - 76*x^2 + 56*x^3) / (1 - 45*x + 518*x^2 - 1268*x^3 - 1704*x^4 + 4064*x^5 - 1536*x^6). - Colin Barker, Aug 18 2018

A223280 Rolling icosahedron face footprints: number of nX6 0..19 arrays starting with 0 where 0..19 label faces of an icosahedron and every array movement to a horizontal, diagonal or antidiagonal neighbor moves across an icosahedral edge.

Original entry on oeis.org

243, 6831, 261819, 10979127, 473368227, 20570223999, 895927195659, 39047604482055, 1702160040384051, 74204651599582287, 3234961829070975771, 141029297731894387287, 6148230806876335875267, 268034791871130540563487
Offset: 1

Views

Author

R. H. Hardin Mar 19 2013

Keywords

Comments

Column 6 of A223282

Examples

			Some solutions for n=3
..0..2..3..2..3..2....0..5..0..1..0..1....0..5..0..5..0..5....0..2..0..1..4..1
..0..2..8..2..8..2....0..5..0..2..0..2....0..5..0..2..0..1....0..2..0..1..0..1
..8..2..0..2..8.13....0..5..0..2..3..2....7..5..0..2..0..5....0..1..0..1..6..1
Face neighbors:
0 -> 1 2 5
1 -> 0 4 6
2 -> 0 3 8
3 -> 2 4 16
4 -> 3 1 17
5 -> 0 7 9
6 -> 1 7 10
7 -> 6 5 11
8 -> 2 9 13
9 -> 8 5 14
10 -> 6 12 17
11 -> 7 12 14
12 -> 11 10 19
13 -> 8 15 16
14 -> 9 11 15
15 -> 14 13 19
16 -> 3 13 18
17 -> 4 10 18
18 -> 16 17 19
19 -> 15 18 12
		

Formula

Empirical: a(n) = 63*a(n-1) -882*a(n-2) +792*a(n-3) +35736*a(n-4) -70768*a(n-5) -246208*a(n-6) +327936*a(n-7) +146432*a(n-8) -180224*a(n-9)

A223281 Rolling icosahedron face footprints: number of nX7 0..19 arrays starting with 0 where 0..19 label faces of an icosahedron and every array movement to a horizontal, diagonal or antidiagonal neighbor moves across an icosahedral edge.

Original entry on oeis.org

729, 29943, 1881441, 137621799, 10801441521, 879050854455, 72981761306721, 6127190749734087, 517631500569076305, 43882777288012073559, 3727442176083442555713, 316954431035692378210023
Offset: 1

Views

Author

R. H. Hardin Mar 19 2013

Keywords

Comments

Column 7 of A223282

Examples

			Some solutions for n=3
..0..1..0..2..3..4..3....0..1..0..2..8..2..0....0..1..4..3.16..3.16
..0..1..0..2..3..4.17....0..5..0..2..0..2..3....0..1..4..3..2..3..2
..0..1..0..2..3..4..1....0..5..0..2..8..2..8....0..1..4..3..2..8..2
Face neighbors:
0 -> 1 2 5
1 -> 0 4 6
2 -> 0 3 8
3 -> 2 4 16
4 -> 3 1 17
5 -> 0 7 9
6 -> 1 7 10
7 -> 6 5 11
8 -> 2 9 13
9 -> 8 5 14
10 -> 6 12 17
11 -> 7 12 14
12 -> 11 10 19
13 -> 8 15 16
14 -> 9 11 15
15 -> 14 13 19
16 -> 3 13 18
17 -> 4 10 18
18 -> 16 17 19
19 -> 15 18 12
		

Formula

Empirical: a(n) = 193*a(n-1) -13138*a(n-2) +389164*a(n-3) -4361048*a(n-4) -16478976*a(n-5) +680367552*a(n-6) -2205737728*a(n-7) -32395676672*a(n-8) +159364997888*a(n-9) +669407522304*a(n-10) -3582601411584*a(n-11) -5951537518592*a(n-12) +34040410587136*a(n-13) +16838602686464*a(n-14) -137580342149120*a(n-15) +18193951227904*a(n-16) +210744868077568*a(n-17) -92999396622336*a(n-18) -80015240724480*a(n-19) +37572373905408*a(n-20)

A223283 Rolling icosahedron face footprints: number of 2 X n 0..19 arrays starting with 0 where 0..19 label faces of an icosahedron and every array movement to a horizontal, diagonal or antidiagonal neighbor moves across an icosahedral edge.

Original entry on oeis.org

20, 15, 87, 351, 1575, 6831, 29943, 130815, 572103, 2501199, 10936215, 47815839, 209064807, 914089455, 3996657207, 17474508351, 76403468295, 334057454991, 1460593174743, 6386124254175, 27921931810983, 122082540957999
Offset: 1

Views

Author

R. H. Hardin, Mar 19 2013

Keywords

Comments

Row 2 of A223282.

Examples

			Some solutions for n=3:
  0 1 4   0 1 4   0 5 0   0 1 6   0 1 0   0 5 7   0 1 6
  4 1 0   4 1 4   7 5 7   0 1 4   0 5 0   9 5 0   4 1 0
Face neighbors:
   0 ->  1  2  5
   1 ->  0  4  6
   2 ->  0  3  8
   3 ->  2  4 16
   4 ->  3  1 17
   5 ->  0  7  9
   6 ->  1  7 10
   7 ->  6  5 11
   8 ->  2  9 13
   9 ->  8  5 14
  10 ->  6 12 17
  11 ->  7 12 14
  12 -> 11 10 19
  13 ->  8 15 16
  14 ->  9 11 15
  15 -> 14 13 19
  16 ->  3 13 18
  17 ->  4 10 18
  18 -> 16 17 19
  19 -> 15 18 12
		

Crossrefs

Cf. A223282.

Formula

Empirical: a(n) = 3*a(n-1) + 6*a(n-2) for n>3.
Empirical g.f.: x*(20 - 45*x - 78*x^2) / (1 - 3*x - 6*x^2). - Colin Barker, Aug 18 2018

A223284 Rolling icosahedron face footprints: number of 3 X n 0..19 arrays starting with 0 where 0..19 label faces of an icosahedron and every array movement to a horizontal, diagonal or antidiagonal neighbor moves across an icosahedral edge.

Original entry on oeis.org

400, 75, 849, 4995, 38457, 261819, 1881441, 13196979, 93567177, 660226923, 4668616305, 32981553891, 233097416793, 1647108262683, 11639737522305, 82252298336787, 581246168781033, 4107418513432011, 29025468445135761
Offset: 1

Views

Author

R. H. Hardin, Mar 19 2013

Keywords

Comments

Row 3 of A223282.

Examples

			Some solutions for n=3:
  0 2 3   0 1 0   0 5 7   0 5 9   0 1 0   0 1 6   0 5 9
  8 2 3   6 1 4   9 5 9   0 5 9   4 1 6   0 1 4   9 5 9
  8 2 3   6 1 0   7 5 9   0 5 9   6 1 4   4 1 0   7 5 9
Face neighbors:
   0 ->  1  2  5
   1 ->  0  4  6
   2 ->  0  3  8
   3 ->  2  4 16
   4 ->  3  1 17
   5 ->  0  7  9
   6 ->  1  7 10
   7 ->  6  5 11
   8 ->  2  9 13
   9 ->  8  5 14
  10 ->  6 12 17
  11 ->  7 12 14
  12 -> 11 10 19
  13 ->  8 15 16
  14 ->  9 11 15
  15 -> 14 13 19
  16 ->  3 13 18
  17 ->  4 10 18
  18 -> 16 17 19
  19 -> 15 18 12
		

Crossrefs

Cf. A223282.

Formula

Empirical: a(n) = 5*a(n-1) + 18*a(n-2) - 24*a(n-3) for n>4.
Empirical g.f.: x*(400 - 1925*x - 6726*x^2 + 9000*x^3) / (1 - 5*x - 18*x^2 + 24*x^3). - Colin Barker, Aug 18 2018

A223285 Rolling icosahedron face footprints: number of 4 X n 0..19 arrays starting with 0 where 0..19 label faces of an icosahedron and every array movement to a horizontal, diagonal or antidiagonal neighbor moves across an icosahedral edge.

Original entry on oeis.org

8000, 375, 8295, 72279, 1024071, 10979127, 137621799, 1576368663, 19009505799, 222545715447, 2650002132711, 31248496329687, 370552575553479, 4379948164268727, 51867287743753383, 613557282050858391
Offset: 1

Views

Author

R. H. Hardin, Mar 19 2013

Keywords

Comments

Row 4 of A223282.

Examples

			Some solutions for n=3:
  0 1 0   0 2 0   0 2 8   0 5 7   0 1 4   0 2 3   0 1 4
  4 1 4   0 2 8   8 2 3   9 5 9   4 1 0   8 2 0   6 1 6
  6 1 4   0 2 3   0 2 8   9 5 0   0 1 6   0 2 8   6 1 6
  6 1 0   8 2 8   3 2 0   9 5 0   6 1 6   0 2 8   4 1 0
Face neighbors:
   0 ->  1  2  5
   1 ->  0  4  6
   2 ->  0  3  8
   3 ->  2  4 16
   4 ->  3  1 17
   5 ->  0  7  9
   6 ->  1  7 10
   7 ->  6  5 11
   8 ->  2  9 13
   9 ->  8  5 14
  10 ->  6 12 17
  11 ->  7 12 14
  12 -> 11 10 19
  13 ->  8 15 16
  14 ->  9 11 15
  15 -> 14 13 19
  16 ->  3 13 18
  17 ->  4 10 18
  18 -> 16 17 19
  19 -> 15 18 12
		

Crossrefs

Cf. A223282.

Formula

Empirical: a(n) = 5*a(n-1) + 92*a(n-2) - 56*a(n-3) - 920*a(n-4) + 192*a(n-5) + 1152*a(n-6) for n>7.
Empirical g.f.: x*(8000 - 39625*x - 729580*x^2 + 444304*x^3 + 7280536*x^4 - 1517376*x^5 - 9097344*x^6) / (1 - 5*x - 92*x^2 + 56*x^3 + 920*x^4 - 192*x^5 - 1152*x^6). - Colin Barker, Aug 18 2018

A223286 Rolling icosahedron face footprints: number of 5Xn 0..19 arrays starting with 0 where 0..19 label faces of an icosahedron and every array movement to a horizontal, diagonal or antidiagonal neighbor moves across an icosahedral edge.

Original entry on oeis.org

160000, 1875, 81057, 1048923, 28271577, 473368227, 10801441521, 200475062187, 4265203621833, 82829709506163, 1709099202398433, 33866115603026427, 689396112362771001, 13783610690189186115, 278907343566603743697
Offset: 1

Views

Author

R. H. Hardin Mar 19 2013

Keywords

Comments

Row 5 of A223282

Examples

			Some solutions for n=3
..0..1..4....0..2..0....0..2..8....0..5..9....0..5..0....0..2..3....0..1..6
..4..1..0....0..5..0....0..2..0....0..5..0....0..1..0....0..2..8....4..1..4
..6..1..6....9..5..9....3..2..0....0..1..0....6..1..0....8..2..3....4..1..6
..6..7..6....9..8..9....8..2..3....4..1..0....0..1..4....3..2..3....6..1..4
.11..7.11...13..8..2....8..2..3....0..1..6....4..1..6....3..4..3....6..1..4
Face neighbors:
0 -> 1 2 5
1 -> 0 4 6
2 -> 0 3 8
3 -> 2 4 16
4 -> 3 1 17
5 -> 0 7 9
6 -> 1 7 10
7 -> 6 5 11
8 -> 2 9 13
9 -> 8 5 14
10 -> 6 12 17
11 -> 7 12 14
12 -> 11 10 19
13 -> 8 15 16
14 -> 9 11 15
15 -> 14 13 19
16 -> 3 13 18
17 -> 4 10 18
18 -> 16 17 19
19 -> 15 18 12
		

Formula

Empirical: a(n) = 13*a(n-1) +278*a(n-2) -2372*a(n-3) -11584*a(n-4) +98256*a(n-5) +68096*a(n-6) -1208064*a(n-7) +753664*a(n-8) +4509696*a(n-9) -4485120*a(n-10) -4571136*a(n-11) +4718592*a(n-12) for n>13

A223287 Rolling icosahedron face footprints: number of 6 X n 0..19 arrays starting with 0 where 0..19 label faces of an icosahedron and every array movement to a horizontal, diagonal or antidiagonal neighbor moves across an icosahedral edge.

Original entry on oeis.org

3200000, 9375, 792087, 15229647, 792881031, 20570223999, 879050854455, 26073158735535, 1008694505830119, 32094483162308319, 1178050642133703831, 38926413103761206799, 1389205962179205980487, 46849778740107421135935
Offset: 1

Views

Author

R. H. Hardin, Mar 19 2013

Keywords

Comments

Row 6 of A223282.

Examples

			Some solutions for n=3
..0..5..0....0..5..0....0..5..0....0..5..0....0..5..0....0..5..0....0..5..0
..0..5..9....7..5..9....0..5..0....7..5..9....9..5..9....0..5..9....9..5..7
..7..5..0....7..5..7....9..5..9....0..5..7....7..5..0....7..5..0....9..5..7
..0..5..9....0..5..9....9..5..9....9..5..9....9..5..0....9..5..9....7..5..0
..9..5..0....7..5..0....9..8..9....9..5..0....7..5..0....9.14..9....7..5..7
..9..5..9....0..5..9...13..8..2....7..5..9....7..5..7...11.14..9....7..5..0
Face neighbors:
0 -> 1 2 5
1 -> 0 4 6
2 -> 0 3 8
3 -> 2 4 16
4 -> 3 1 17
5 -> 0 7 9
6 -> 1 7 10
7 -> 6 5 11
8 -> 2 9 13
9 -> 8 5 14
10 -> 6 12 17
11 -> 7 12 14
12 -> 11 10 19
13 -> 8 15 16
14 -> 9 11 15
15 -> 14 13 19
16 -> 3 13 18
17 -> 4 10 18
18 -> 16 17 19
19 -> 15 18 12
		

Crossrefs

Cf. A223282.

Formula

Empirical: a(n) = 13*a(n-1) +1244*a(n-2) -8256*a(n-3) -402464*a(n-4) +1780288*a(n-5) +55907168*a(n-6) -197740288*a(n-7) -4040907520*a(n-8) +12437493760*a(n-9) +166070886400*a(n-10) -452922138624*a(n-11) -4093663121408*a(n-12) +9761715879936*a(n-13) +62363887337472*a(n-14) -126220206735360*a(n-15) -595038449696768*a(n-16) +978337484767232*a(n-17) +3542610027216896*a(n-18) -4455273209004032*a(n-19) -12803732509032448*a(n-20) +11344509988241408*a(n-21) +26381276122447872*a(n-22) -14571020149063680*a(n-23) -27374953313599488*a(n-24) +7085252929388544*a(n-25) +10449758510383104*a(n-26) for n>27.
Showing 1-10 of 12 results. Next