A223322 Rolling icosahedron footprints: number of 2 X n 0..11 arrays starting with 0 where 0..11 label vertices of an icosahedron and every array movement to a horizontal or antidiagonal neighbor moves along an icosahedral edge.
12, 125, 1625, 21125, 274625, 3570125, 46411625, 603351125, 7843564625, 101966340125, 1325562421625, 17232311481125, 224020049254625, 2912260640310125, 37859388324031625, 492172048212411125
Offset: 1
Keywords
Examples
Some solutions for n=3: ..0..7..3....0..2..8....0..2..4....0..5.11....0..6..5....0..1..3....0..7..0 ..1..8..4....8..1..2....8..2..1...10..9..4....2..6..2....3.11..3....0..1..7 Vertex neighbors: 0 -> 1 2 5 6 7 1 -> 0 2 3 7 8 2 -> 0 1 4 6 8 3 -> 1 7 8 9 11 4 -> 2 6 8 9 10 5 -> 0 6 7 10 11 6 -> 0 2 4 5 10 7 -> 0 1 3 5 11 8 -> 1 2 3 4 9 9 -> 3 4 8 10 11 10 -> 4 5 6 9 11 11 -> 3 5 7 9 10
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
- Index entries for linear recurrences with constant coefficients, signature (13).
Crossrefs
Cf. A223321.
Formula
Empirical: a(n) = 13*a(n-1) for n>2.
Conjectures from Colin Barker, Aug 19 2018: (Start)
G.f.: x*(12 - 31*x) / (1 - 13*x).
a(n) = 125*13^(n-2) for n>1.
(End)
Comments