cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A223352 T(n,k)=3X3X3 triangular graph without horizontal edges coloring a rectangular array: number of nXk 0..5 arrays where 0..5 label nodes of a graph with edges 0,1 0,2 1,3 1,4 2,4 2,5 and every array movement to a horizontal or vertical neighbor moves along an edge of this graph.

Original entry on oeis.org

6, 12, 12, 28, 52, 28, 60, 236, 236, 60, 140, 1076, 2280, 1076, 140, 300, 4908, 20836, 20836, 4908, 300, 700, 22388, 202264, 405988, 202264, 22388, 700, 1500, 102124, 1851020, 7918948, 7918948, 1851020, 102124, 1500, 3500, 465844, 17970056
Offset: 1

Views

Author

R. H. Hardin Mar 19 2013

Keywords

Comments

Table starts
....6......12..........28.............60...............140..................300
...12......52.........236...........1076..............4908................22388
...28.....236........2280..........20836............202264..............1851020
...60....1076.......20836.........405988...........7918948............154482340
..140....4908......202264........7918948.........329268616..........12912752876
..300...22388.....1851020......154482340.......12912752876........1079538816324
..700..102124....17970056.....3013692516......537001573656.......90254934876620
.1500..465844...164457412....58792282660....21060038730884.....7545802995190884
.3500.2124972..1596586328..1146943179236...875825392204488...630870570544801836
.7500.9693172.14611562156.22375024222628.34348003384801484.52744249735952687492

Examples

			Some solutions for n=3 k=4
..1..0..1..4....1..0..1..4....2..0..1..0....3..1..0..1....4..1..0..2
..4..2..4..2....3..1..0..2....4..1..0..2....1..3..1..0....1..0..2..4
..1..0..1..4....1..4..2..0....2..4..2..4....0..1..0..2....4..2..4..1
		

Crossrefs

Column 2 is A223249

Formula

Empirical for column k:
k=1: a(n) = 5*a(n-2) for n>3
k=2: a(n) = 5*a(n-1) -2*a(n-2)
k=3: a(n) = 91*a(n-2) -192*a(n-4) +64*a(n-6)
k=4: a(n) = 23*a(n-1) -66*a(n-2) -52*a(n-3) +208*a(n-4) +32*a(n-5) -128*a(n-6)
k=5: [order 12] for n>13
k=6: [order 18]
k=7: [order 36]