A223352 T(n,k)=3X3X3 triangular graph without horizontal edges coloring a rectangular array: number of nXk 0..5 arrays where 0..5 label nodes of a graph with edges 0,1 0,2 1,3 1,4 2,4 2,5 and every array movement to a horizontal or vertical neighbor moves along an edge of this graph.
6, 12, 12, 28, 52, 28, 60, 236, 236, 60, 140, 1076, 2280, 1076, 140, 300, 4908, 20836, 20836, 4908, 300, 700, 22388, 202264, 405988, 202264, 22388, 700, 1500, 102124, 1851020, 7918948, 7918948, 1851020, 102124, 1500, 3500, 465844, 17970056
Offset: 1
Examples
Some solutions for n=3 k=4 ..1..0..1..4....1..0..1..4....2..0..1..0....3..1..0..1....4..1..0..2 ..4..2..4..2....3..1..0..2....4..1..0..2....1..3..1..0....1..0..2..4 ..1..0..1..4....1..4..2..0....2..4..2..4....0..1..0..2....4..2..4..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..480
Crossrefs
Column 2 is A223249
Formula
Empirical for column k:
k=1: a(n) = 5*a(n-2) for n>3
k=2: a(n) = 5*a(n-1) -2*a(n-2)
k=3: a(n) = 91*a(n-2) -192*a(n-4) +64*a(n-6)
k=4: a(n) = 23*a(n-1) -66*a(n-2) -52*a(n-3) +208*a(n-4) +32*a(n-5) -128*a(n-6)
k=5: [order 12] for n>13
k=6: [order 18]
k=7: [order 36]
Comments