A223434 Generalized Petersen graph (8,2) coloring a rectangular array: number of n X 2 0..15 arrays where 0..15 label nodes of a graph with edges 0,1 0,8 8,14 8,10 1,2 1,9 9,15 9,11 2,3 2,10 10,12 3,4 3,11 11,13 4,5 4,12 12,14 5,6 5,13 13,15 6,7 6,14 7,0 7,15 and every array movement to a horizontal or vertical neighbor moves along an edge of this graph.
48, 256, 1376, 7424, 40160, 217600, 1180256, 6405888, 34782688, 188912640, 1026197344, 5575016704, 30289360608, 164570543616, 894181114976, 4858543170304, 26399224399840, 143442922485760, 779415220762976
Offset: 1
Keywords
Examples
Some solutions for n=3: ..6..5....8..0....3..4...11.13....7..0...11.13....9..1....1..0....1..9....1..9 .14..6....0..7....2..3...13.15...15..7...13.15....1..2....0..1....2..1....9.11 ..8.14....8..0....3..2...15.13....9.15...15..7....2..3....1..2....3..2....1..9
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A223440.
Formula
Empirical: a(n) = 8*a(n-1) - 11*a(n-2) - 16*a(n-3).
Empirical g.f.: 16*x*(3 - 8*x - 9*x^2) / (1 - 8*x + 11*x^2 + 16*x^3). - Colin Barker, Mar 16 2018
Comments