cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A223599 T(n,k)=Petersen graph (8,2) coloring a rectangular array: number of nXk 0..15 arrays where 0..15 label nodes of a graph with edges 0,1 0,8 8,14 8,10 1,2 1,9 9,15 9,11 2,3 2,10 10,12 3,4 3,11 11,13 4,5 4,12 12,14 5,6 5,13 13,15 6,7 6,14 7,0 7,15 and every array movement to a horizontal, diagonal or antidiagonal neighbor moves along an edge of this graph.

Original entry on oeis.org

16, 48, 256, 144, 256, 4096, 432, 1504, 1376, 65536, 1296, 6736, 16192, 7424, 1048576, 3888, 32768, 122608, 176224, 40160, 16777216, 11664, 156592, 1124064, 2372080, 1931968, 217600, 268435456, 34992, 755200, 9902320, 43725920, 47659632
Offset: 1

Views

Author

R. H. Hardin Mar 23 2013

Keywords

Comments

Table starts
............16........48..........144.............432...............1296
...........256.......256.........1504............6736..............32768
..........4096......1376........16192..........122608............1124064
.........65536......7424.......176224.........2372080...........43725920
.......1048576.....40160......1931968........47659632.........1807461152
......16777216....217600.....21308000.......982848688........77164934624
.....268435456...1180256....236213312.....20631729648......3355919411936
....4294967296...6405888...2629972704....438231627440....147579242411936
...68719476736..34782688..29389265856...9379905920496...6534353238114336
.1099511627776.188912640.329426847840.201754894742320.290550417324168160

Examples

			Some solutions for n=3 k=4
.14..6..5.13...13.15..9.15...12..4.12.10....6..5.13.15....8.14..8.10
..7..6..5..6...13.15..9..1...12..4.12..4....6..5.13..5....8.14..8.14
..5..6.14..6....9.15..9.11....5..4.12.14...13..5..6..5....6.14..6.14
		

Crossrefs

Column 1 is A001025
Column 2 is A223434
Row 1 is A188825(n+1)

Formula

Empirical for column k:
k=1: a(n) = 16*a(n-1)
k=2: a(n) = 8*a(n-1) -11*a(n-2) -16*a(n-3)
k=3: a(n) = 23*a(n-1) -153*a(n-2) +217*a(n-3) +258*a(n-4) -456*a(n-5) -104*a(n-6) +192*a(n-7)
k=4: [order 9]
k=5: [order 29]
k=6: [order 55]
Empirical for row n:
n=1: a(n) = 3*a(n-1)
n=2: a(n) = 6*a(n-1) +3*a(n-2) -42*a(n-3) -8*a(n-4) +48*a(n-5) for n>6
n=3: [order 11] for n>12
n=4: [order 28] for n>29
n=5: [order 74] for n>75
Showing 1-1 of 1 results.