A223458 Primes whose first digit is a composite number.
41, 43, 47, 61, 67, 83, 89, 97, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881
Offset: 1
Examples
409 is a prime number whose first digit is 4, a composite number, so 409 is a term.
Links
- K. D. Bajpai, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A069090 (primes none of whose proper initial segments are primes).
Programs
-
Maple
KD := proc() local a,b,d,e; a:= ithprime(n); b:=length(a); d:=a/(10^(b-1)); e:=floor(d); if isprime(e)=false and e>1 then RETURN (a): fi; end: seq(KD(),n=1..200);
-
Python
from sympy import primerange from itertools import count, islice def agen(): yield from (p for e in count(1) for k in [4, 6, 8, 9] for p in primerange(k*10**e, (k+1)*10**e)) print(list(islice(agen(), 54))) # Michael S. Branicky, Jun 25 2022