A223480 T(n,k)=Rolling icosahedron face footprints: number of nXk 0..19 arrays starting with 0 where 0..19 label faces of an icosahedron and every array movement to a horizontal or antidiagonal neighbor moves across an icosahedral edge.
1, 3, 20, 9, 27, 400, 27, 135, 243, 8000, 81, 675, 2025, 2187, 160000, 243, 3375, 16875, 30375, 19683, 3200000, 729, 16875, 147825, 421875, 455625, 177147, 64000000, 2187, 84375, 1296675, 6526575, 10546875, 6834375, 1594323, 1280000000, 6561, 421875
Offset: 1
Examples
Some solutions for n=3 k=4 ..0..1..6.10....0..1..4..1....0..1..0..1....0..2..8.13....0..2..8..9 ..6..1..6..1....6..1..4..3....4..1..0..5....0..2..8..2....8..9..8..9 ..4..1..4..3....4.17..4.17....0..5..9..5....8..2..3..4....8..2..8..9 Face neighbors: 0 -> 1 2 5 1 -> 0 4 6 2 -> 0 3 8 3 -> 2 4 16 4 -> 3 1 17 5 -> 0 7 9 6 -> 1 7 10 7 -> 6 5 11 8 -> 2 9 13 9 -> 8 5 14 10 -> 6 12 17 11 -> 7 12 14 12 -> 11 10 19 13 -> 8 15 16 14 -> 9 11 15 15 -> 14 13 19 16 -> 3 13 18 17 -> 4 10 18 18 -> 16 17 19 19 -> 15 18 12
Links
- R. H. Hardin, Table of n, a(n) for n = 1..160
Crossrefs
Formula
Empirical for column k:
k=1: a(n) = 20*a(n-1)
k=2: a(n) = 9*a(n-1)
k=3: a(n) = 15*a(n-1)
k=4: a(n) = 25*a(n-1)
k=5: a(n) = 51*a(n-1) -300*a(n-2)
k=6: a(n) = 101*a(n-1) -1900*a(n-2) +10000*a(n-3)
k=7: a(n) = 227*a(n-1) -14764*a(n-2) +411840*a(n-3) -5347200*a(n-4) +29600000*a(n-5) -48000000*a(n-6)
Empirical for row n:
n=1: a(n) = 3*a(n-1)
n=2: a(n) = 5*a(n-1) for n>2
n=3: a(n) = 9*a(n-1) -2*a(n-2) for n>4
n=4: a(n) = 17*a(n-1) -16*a(n-2) -76*a(n-3) +64*a(n-4) for n>7
n=5: a(n) = 33*a(n-1) -86*a(n-2) -1564*a(n-3) +7040*a(n-4) -6480*a(n-5) -5088*a(n-6) +5824*a(n-7) -512*a(n-8) for n>13
n=6: [order 20] for n>25
Comments