cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A223477 Rolling icosahedron face footprints: number of n X 5 0..19 arrays starting with 0 where 0..19 label faces of an icosahedron and every array movement to a horizontal or antidiagonal neighbor moves across an icosahedral edge.

Original entry on oeis.org

81, 3375, 147825, 6526575, 288507825, 12755926575, 563999907825, 24937217326575, 1102598111307825, 48751338478726575, 2155538829022707825, 95307078736540126575, 4213999366856734107825, 186321844088731401526575
Offset: 1

Views

Author

R. H. Hardin, Mar 20 2013

Keywords

Comments

Column 5 of A223480.

Examples

			Some solutions for n=3:
..0..1..6.10.17....0..1..6..7..5....0..2..0..2..0....0..2..0..1..6
..6.10.17.10.12....6..7.11..7..6....8..2..0..5..7....0..1..0..1..4
.17.10.12.11.12....6..7..5..7..5....0..5..7.11.14....0..5..0..1..6
Face neighbors:
0 -> 1 2 5
1 -> 0 4 6
2 -> 0 3 8
3 -> 2 4 16
4 -> 3 1 17
5 -> 0 7 9
6 -> 1 7 10
7 -> 6 5 11
8 -> 2 9 13
9 -> 8 5 14
10 -> 6 12 17
11 -> 7 12 14
12 -> 11 10 19
13 -> 8 15 16
14 -> 9 11 15
15 -> 14 13 19
16 -> 3 13 18
17 -> 4 10 18
18 -> 16 17 19
19 -> 15 18 12
		

Crossrefs

Cf. A223480.

Formula

Empirical: a(n) = 51*a(n-1) - 300*a(n-2).
Empirical g.f.: 27*x*(3 - 28*x) / (1 - 51*x + 300*x^2). - Colin Barker, Aug 20 2018

A223478 Rolling icosahedron face footprints: number of n X 6 0..19 arrays starting with 0 where 0..19 label faces of an icosahedron and every array movement to a horizontal or antidiagonal neighbor moves across an icosahedral edge.

Original entry on oeis.org

243, 16875, 1296675, 101331675, 7939566675, 622332801675, 48783753036675, 3824122400271675, 299770559674506675, 23498831496975741675, 1842059141815703976675, 144397899075877259211675
Offset: 1

Views

Author

R. H. Hardin, Mar 20 2013

Keywords

Comments

Column 6 of A223480.

Examples

			Some solutions for n=3:
..0..1..6..1..4..3....0..1..4..1..4..1....0..1..0..5..9..8....0..1..0..2..3.16
..0..1..0..1..4..1....0..1..4..1..4..3....0..5..9..5..9..5....0..2..0..2..3.16
..0..1..4..1..6..1....6..1..4..3..2..0....0..5..9.14..9.14....0..2..3..4..3..4
Face neighbors:
0 -> 1 2 5
1 -> 0 4 6
2 -> 0 3 8
3 -> 2 4 16
4 -> 3 1 17
5 -> 0 7 9
6 -> 1 7 10
7 -> 6 5 11
8 -> 2 9 13
9 -> 8 5 14
10 -> 6 12 17
11 -> 7 12 14
12 -> 11 10 19
13 -> 8 15 16
14 -> 9 11 15
15 -> 14 13 19
16 -> 3 13 18
17 -> 4 10 18
18 -> 16 17 19
19 -> 15 18 12
		

Crossrefs

Cf. A223480.

Formula

Empirical: a(n) = 101*a(n-1) -1900*a(n-2) +10000*a(n-3).
Empirical g.f.: 27*x*(9 - 284*x + 2000*x^2) / (1 - 101*x + 1900*x^2 - 10000*x^3). - Colin Barker, Aug 20 2018

A223479 Rolling icosahedron face footprints: number of nX7 0..19 arrays starting with 0 where 0..19 label faces of an icosahedron and every array movement to a horizontal or antidiagonal neighbor moves across an icosahedral edge.

Original entry on oeis.org

729, 84375, 11374425, 1588785975, 223894186425, 31621425535575, 4468456626780825, 631526586023769975, 89256484380983132025, 12615117535169199386775, 1782968370270784918644825
Offset: 1

Views

Author

R. H. Hardin Mar 20 2013

Keywords

Comments

Column 7 of A223480

Examples

			Some solutions for n=3
..0..5..0..5..7.11..7....0..5..0..1..4..1..6....0..5..0..5..0..2..0
..0..5..0..5..7..5..9....0..5..0..1..6..1..0....0..5..0..1..0..2..8
..0..5..9..5..9..5..7....0..1..0..1..0..5..0....0..1..4..1..0..2..0
Face neighbors:
0 -> 1 2 5
1 -> 0 4 6
2 -> 0 3 8
3 -> 2 4 16
4 -> 3 1 17
5 -> 0 7 9
6 -> 1 7 10
7 -> 6 5 11
8 -> 2 9 13
9 -> 8 5 14
10 -> 6 12 17
11 -> 7 12 14
12 -> 11 10 19
13 -> 8 15 16
14 -> 9 11 15
15 -> 14 13 19
16 -> 3 13 18
17 -> 4 10 18
18 -> 16 17 19
19 -> 15 18 12
		

Formula

Empirical: a(n) = 227*a(n-1) -14764*a(n-2) +411840*a(n-3) -5347200*a(n-4) +29600000*a(n-5) -48000000*a(n-6)

A223481 Rolling icosahedron face footprints: number of 3 X n 0..19 arrays starting with 0 where 0..19 label faces of an icosahedron and every array movement to a horizontal or antidiagonal neighbor moves across an icosahedral edge.

Original entry on oeis.org

400, 243, 2025, 16875, 147825, 1296675, 11374425, 99776475, 875239425, 7677601875, 67347938025, 590776238475, 5182290270225, 45459059955075, 398766959055225, 3497984511586875, 30684326686171425, 269162971152369075
Offset: 1

Views

Author

R. H. Hardin, Mar 20 2013

Keywords

Comments

Row 3 of A223480.

Examples

			Some solutions for n=3:
..0..2..3....0..1..0....0..2..8....0..5..0....0..1..0....0..2..0....0..1..6
..3..4..1....0..2..8....3..2..8....0..5..9....0..2..0....3..2..3....6..1..6
..1..4..1....8..2..8....8..9..5....9..8..2....3..2..8....3..4..1....6.10.12
Face neighbors:
0 -> 1 2 5
1 -> 0 4 6
2 -> 0 3 8
3 -> 2 4 16
4 -> 3 1 17
5 -> 0 7 9
6 -> 1 7 10
7 -> 6 5 11
8 -> 2 9 13
9 -> 8 5 14
10 -> 6 12 17
11 -> 7 12 14
12 -> 11 10 19
13 -> 8 15 16
14 -> 9 11 15
15 -> 14 13 19
16 -> 3 13 18
17 -> 4 10 18
18 -> 16 17 19
19 -> 15 18 12
		

Crossrefs

Cf. A223480.

Formula

Empirical: a(n) = 9*a(n-1) - 2*a(n-2) for n>4.
Empirical g.f.: x*(400 - 3357*x + 638*x^2 - 864*x^3) / (1 - 9*x + 2*x^2). - Colin Barker, Aug 20 2018

A223482 Rolling icosahedron face footprints: number of 4 X n 0..19 arrays starting with 0 where 0..19 label faces of an icosahedron and every array movement to a horizontal or antidiagonal neighbor moves across an icosahedral edge.

Original entry on oeis.org

8000, 2187, 30375, 421875, 6526575, 101331675, 1588785975, 24919035075, 390919514175, 6132664672875, 96208422848775, 1509305488830675, 23677794878309775, 371454275512532475, 5827328087571285975
Offset: 1

Views

Author

R. H. Hardin, Mar 20 2013

Keywords

Comments

Row 4 of A223480.

Examples

			Some solutions for n=3:
..0..2..3....0..5..9....0..2..8....0..5..9....0..1..6....0..2..3....0..1..4
..0..2..8....7..5..7....3..2..8....9..5..7....6.10..6....8..2..0....0..1..6
..8..2..0....7..6..1....0..2..8....7..6..7....6..7..6....0..1..6....6..7.11
..8..2..8....7..6..7....8..2..8....7..5..9....6.10.12....6..1..0....6..7..6
Face neighbors:
0 -> 1 2 5
1 -> 0 4 6
2 -> 0 3 8
3 -> 2 4 16
4 -> 3 1 17
5 -> 0 7 9
6 -> 1 7 10
7 -> 6 5 11
8 -> 2 9 13
9 -> 8 5 14
10 -> 6 12 17
11 -> 7 12 14
12 -> 11 10 19
13 -> 8 15 16
14 -> 9 11 15
15 -> 14 13 19
16 -> 3 13 18
17 -> 4 10 18
18 -> 16 17 19
19 -> 15 18 12
		

Crossrefs

Cf. A223480.

Formula

Empirical: a(n) = 17*a(n-1) - 16*a(n-2) - 76*a(n-3) + 64*a(n-4) for n>7.
Empirical g.f.: x*(8000 - 133813*x + 121196*x^2 + 548492*x^3 - 505088*x^4 - 701568*x^5 + 691200*x^6) / ((1 + 2*x)*(1 - 19*x + 54*x^2 - 32*x^3)). - Colin Barker, Aug 20 2018

A223483 Rolling icosahedron face footprints: number of 5Xn 0..19 arrays starting with 0 where 0..19 label faces of an icosahedron and every array movement to a horizontal or antidiagonal neighbor moves across an icosahedral edge.

Original entry on oeis.org

160000, 19683, 455625, 10546875, 288507825, 7939566675, 223894186425, 6318290752875, 178826926010625, 5061686863486275, 143298073856716425, 4056837300096090075, 114852424247153593425, 3251568434305627847475
Offset: 1

Views

Author

R. H. Hardin Mar 20 2013

Keywords

Comments

Row 5 of A223480

Examples

			Some solutions for n=3
..0..5..0....0..5..0....0..5..0....0..5..0....0..5..7....0..5..0....0..5..7
..7..5..7....0..1..4....9..5..0....0..2..0....0..5..7....0..5..0....7..6..7
..9..5..9....4.17..4....0..2..8....0..2..8....7..5..9....0..5..7....7..5..9
..9..8.13....4.17..4....3..2..8....8..2..3....7..5..0....7..6..1....7..5..7
..2..8..2...18.17..4....8.13..8....0..2..3....0..1..0....1..0..2....7..6..1
Face neighbors:
0 -> 1 2 5
1 -> 0 4 6
2 -> 0 3 8
3 -> 2 4 16
4 -> 3 1 17
5 -> 0 7 9
6 -> 1 7 10
7 -> 6 5 11
8 -> 2 9 13
9 -> 8 5 14
10 -> 6 12 17
11 -> 7 12 14
12 -> 11 10 19
13 -> 8 15 16
14 -> 9 11 15
15 -> 14 13 19
16 -> 3 13 18
17 -> 4 10 18
18 -> 16 17 19
19 -> 15 18 12
		

Formula

Empirical: a(n) = 33*a(n-1) -86*a(n-2) -1564*a(n-3) +7040*a(n-4) -6480*a(n-5) -5088*a(n-6) +5824*a(n-7) -512*a(n-8) for n>13

A223484 Rolling icosahedron face footprints: number of 6 X n 0..19 arrays starting with 0 where 0..19 label faces of an icosahedron and every array movement to a horizontal or antidiagonal neighbor moves across an icosahedral edge.

Original entry on oeis.org

3200000, 177147, 6834375, 263671875, 12755926575, 622332801675, 31621425535575, 1608341612382675, 82456836767805375, 4227484231555443675, 217015136003889260775, 11140133589863412595875, 571949483621302897613775
Offset: 1

Views

Author

R. H. Hardin Mar 20 2013

Keywords

Comments

Row 6 of A223480.

Examples

			Some solutions for n=3
..0..5..0....0..5..0....0..5..0....0..5..0....0..5..0....0..5..0....0..5..0
..0..1..0....0..1..0....0..1..0....0..1..4....0..1..4....0..1..0....0..1..4
..0..1..4....6..1..0....6..1..4....4.17..4....4..1..4....4..1..6....0..1..4
..4..1..0....0..5..9....4..1..0...10.17.10....4.17.18....0..1..4....0..1..0
..0..1..4....9..5..0....4..1..6....4.17.10...18.16.18....4.17.10....0..1..4
..0..1..4....0..2..3....6..7..5....4.17.10...18.17..4...10.12.10....4..3.16
Face neighbors:
0 -> 1 2 5
1 -> 0 4 6
2 -> 0 3 8
3 -> 2 4 16
4 -> 3 1 17
5 -> 0 7 9
6 -> 1 7 10
7 -> 6 5 11
8 -> 2 9 13
9 -> 8 5 14
10 -> 6 12 17
11 -> 7 12 14
12 -> 11 10 19
13 -> 8 15 16
14 -> 9 11 15
15 -> 14 13 19
16 -> 3 13 18
17 -> 4 10 18
18 -> 16 17 19
19 -> 15 18 12
		

Crossrefs

Cf. A223480.

Formula

Empirical: a(n) = 65*a(n-1) -392*a(n-2) -21060*a(n-3) +271696*a(n-4) -61920*a(n-5) -12301824*a(n-6) +41001664*a(n-7) +141738752*a(n-8) -796132352*a(n-9) -244873216*a(n-10) +5515101184*a(n-11) -3510669312*a(n-12) -15177555968*a(n-13) +15458697216*a(n-14) +13446168576*a(n-15) -14442954752*a(n-16) -4507631616*a(n-17) +3989831680*a(n-18) +252706816*a(n-19) -251658240*a(n-20) for n>25.

A223485 Rolling icosahedron face footprints: number of 7Xn 0..19 arrays starting with 0 where 0..19 label faces of an icosahedron and every array movement to a horizontal or antidiagonal neighbor moves across an icosahedral edge.

Original entry on oeis.org

64000000, 1594323, 102515625, 6591796875, 563999907825, 48783753036675, 4468456626780825, 409807503225524475, 38120535124295537025, 3545335226678204077875, 330863549667143315488425
Offset: 1

Views

Author

R. H. Hardin Mar 20 2013

Keywords

Comments

Row 7 of A223480

Examples

			Some solutions for n=3
..0..5..0....0..5..0....0..5..0....0..5..0....0..5..0....0..5..0....0..5..0
..0..1..0....0..1..0....0..1..0....0..1..0....0..1..0....0..1..0....0..1..0
..0..1..0....0..1..0....0..1..0....0..1..0....0..1..0....0..1..0....0..1..4
..0..5..7....4..1..4....4..1..6....4..1..4....6..1..4....4..1..6....4.17..4
..7..5..7....6..1..0....6..7..5....6..1..6....6..1..6....0..1..4....4..3.16
..9..5..7....0..5..9...11..7.11....0..1..0....0..1..0....4.17.18....2..3..4
..0..5..9....9.14.11...11.12.10....6..1..0....0..5..9....4.17.10...16..3..2
Face neighbors:
0 -> 1 2 5
1 -> 0 4 6
2 -> 0 3 8
3 -> 2 4 16
4 -> 3 1 17
5 -> 0 7 9
6 -> 1 7 10
7 -> 6 5 11
8 -> 2 9 13
9 -> 8 5 14
10 -> 6 12 17
11 -> 7 12 14
12 -> 11 10 19
13 -> 8 15 16
14 -> 9 11 15
15 -> 14 13 19
16 -> 3 13 18
17 -> 4 10 18
18 -> 16 17 19
19 -> 15 18 12
		

A223476 Rolling icosahedron face footprints: number of n X n 0..19 arrays starting with 0 where 0..19 label faces of an icosahedron and every array movement to a horizontal or antidiagonal neighbor moves across an icosahedral edge.

Original entry on oeis.org

1, 27, 2025, 421875, 288507825, 622332801675, 4468456626780825, 104443823338086658275, 8163685522687864520397825, 2101858460730043160691131026875
Offset: 1

Views

Author

R. H. Hardin Mar 20 2013

Keywords

Comments

Diagonal of A223480

Examples

			Some solutions for n=3
..0..1..0....0..2..8....0..2..8....0..2..8....0..2..8....0..2..8....0..2..8
..0..5..7....8..9.14....0..2..3....0..2..8....0..2..0....3..2..8....8..2..3
..7..5..9...14.11..7....3..4.17....8..2..8....3..2..0....3..2..3....3..4..3
Face neighbors:
0 -> 1 2 5
1 -> 0 4 6
2 -> 0 3 8
3 -> 2 4 16
4 -> 3 1 17
5 -> 0 7 9
6 -> 1 7 10
7 -> 6 5 11
8 -> 2 9 13
9 -> 8 5 14
10 -> 6 12 17
11 -> 7 12 14
12 -> 11 10 19
13 -> 8 15 16
14 -> 9 11 15
15 -> 14 13 19
16 -> 3 13 18
17 -> 4 10 18
18 -> 16 17 19
19 -> 15 18 12
		
Showing 1-9 of 9 results.