A223486 Lucas entry points: a(n) = least k such that n divides Lucas number L_k (=A000032(k), for k >= 0), or -1 if there is no such k.
0, 0, 2, 3, -1, 6, 4, -1, 6, -1, 5, -1, -1, 12, -1, -1, -1, 6, 9, -1, -1, 15, 12, -1, -1, -1, 18, -1, 7, -1, 15, -1, -1, -1, -1, -1, -1, 9, -1, -1, 10, -1, 22, 15, -1, 12, 8, -1, 28, -1, -1, -1, -1, 18, -1, -1, -1, 21, 29, -1, -1, 15, -1, -1, -1, -1, 34, -1
Offset: 1
Keywords
Examples
a(9) = 6 because L_6 = 18 is the first number in the Lucas sequence (A000032) that 9 divides.
References
- A. Brousseau, Fibonacci and Related Number Theoretic Tables. Fibonacci Association, San Jose, CA, 1972, p. 25.
- S. Vajda, Fibonacci and Lucas numbers and the Golden Section, Ellis Horwood Ltd., Chichester, 1989.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
test[n_] := Module[{a, b, t, cnt = 1}, {a, b} = {2, 1}; While[cnt++; t = b; b = Mod[a + b, n]; a = t; ! (b == 0 || {a, b} == {2, 1})]; If[b == 0, cnt, -1]]; Join[{0, 0}, Table[test[i], {i, Range[3, 100]}]] (* T. D. Noe, Mar 22 2013 *)
Extensions
Edited. Added "k >= 0" in the name and added cross references. - Wolfdieter Lang, Jan 20 2015
Comments