cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A223504 T(n,k)=Petersen graph (3,1) coloring a rectangular array: number of nXk 0..5 arrays where 0..5 label nodes of a graph with edges 0,1 0,3 3,5 3,4 1,2 1,4 4,5 2,0 2,5 and every array movement to a horizontal, diagonal or antidiagonal neighbor moves along an edge of this graph, with the array starting at 0.

Original entry on oeis.org

1, 3, 6, 9, 19, 36, 27, 115, 121, 216, 81, 631, 1519, 771, 1296, 243, 3539, 16323, 20115, 4913, 7776, 729, 19759, 182901, 426359, 266419, 31307, 46656, 2187, 110427, 2030665, 9685063, 11148439, 3528715, 199497, 279936, 6561, 617015, 22598167
Offset: 1

Views

Author

R. H. Hardin Mar 21 2013

Keywords

Comments

Table starts
........1........3............9..............27.................81
........6.......19..........115.............631...............3539
.......36......121.........1519...........16323.............182901
......216......771........20115..........426359............9685063
.....1296.....4913.......266419........11148439..........515473927
.....7776....31307......3528715.......291545903........27465794119
....46656...199497.....46737819......7624417031......1463848507173
...279936..1271251....619042315....199391762123.....78024299447333
..1679616..8100769...8199214219...5214442630935...4158831849750231
.10077696.51620379.108598575915.136366781617267.221674060909378867

Examples

			Some solutions for n=3 k=4
..0..3..4..1....0..2..1..4....0..3..0..3....0..2..1..2....0..1..4..3
..0..3..4..3....5..2..5..4....4..1..0..1....1..2..0..2....0..1..0..3
..5..3..0..1....1..2..1..2....0..1..0..1....5..2..0..2....0..3..0..1
		

Crossrefs

Column 1 is A000400(n-1)
Column 2 is A138977
Row 1 is A000244(n-1)

Formula

Empirical for column k:
k=1: a(n) = 6*a(n-1)
k=2: a(n) = 7*a(n-1) -4*a(n-2)
k=3: a(n) = 15*a(n-1) -24*a(n-2) +10*a(n-3)
k=4: a(n) = 31*a(n-1) -127*a(n-2) -20*a(n-3) +705*a(n-4) -1027*a(n-5) +499*a(n-6) -60*a(n-7)
k=5: [order 21]
k=6: [order 53]
Empirical for row n:
n=1: a(n) = 3*a(n-1)
n=2: a(n) = 5*a(n-1) +4*a(n-2) -4*a(n-3) for n>4
n=3: a(n) = 12*a(n-1) -4*a(n-2) -73*a(n-3) +103*a(n-4) -23*a(n-5) -16*a(n-6) +4*a(n-7) for n>8
n=4: [order 21] for n>22
n=5: [order 60] for n>61