A223504 T(n,k)=Petersen graph (3,1) coloring a rectangular array: number of nXk 0..5 arrays where 0..5 label nodes of a graph with edges 0,1 0,3 3,5 3,4 1,2 1,4 4,5 2,0 2,5 and every array movement to a horizontal, diagonal or antidiagonal neighbor moves along an edge of this graph, with the array starting at 0.
1, 3, 6, 9, 19, 36, 27, 115, 121, 216, 81, 631, 1519, 771, 1296, 243, 3539, 16323, 20115, 4913, 7776, 729, 19759, 182901, 426359, 266419, 31307, 46656, 2187, 110427, 2030665, 9685063, 11148439, 3528715, 199497, 279936, 6561, 617015, 22598167
Offset: 1
Examples
Some solutions for n=3 k=4 ..0..3..4..1....0..2..1..4....0..3..0..3....0..2..1..2....0..1..4..3 ..0..3..4..3....5..2..5..4....4..1..0..1....1..2..0..2....0..1..0..3 ..5..3..0..1....1..2..1..2....0..1..0..1....5..2..0..2....0..3..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..199
Formula
Empirical for column k:
k=1: a(n) = 6*a(n-1)
k=2: a(n) = 7*a(n-1) -4*a(n-2)
k=3: a(n) = 15*a(n-1) -24*a(n-2) +10*a(n-3)
k=4: a(n) = 31*a(n-1) -127*a(n-2) -20*a(n-3) +705*a(n-4) -1027*a(n-5) +499*a(n-6) -60*a(n-7)
k=5: [order 21]
k=6: [order 53]
Empirical for row n:
n=1: a(n) = 3*a(n-1)
n=2: a(n) = 5*a(n-1) +4*a(n-2) -4*a(n-3) for n>4
n=3: a(n) = 12*a(n-1) -4*a(n-2) -73*a(n-3) +103*a(n-4) -23*a(n-5) -16*a(n-6) +4*a(n-7) for n>8
n=4: [order 21] for n>22
n=5: [order 60] for n>61
Comments