A223514 Triangle T(n,k) represents the coefficients of (x^12*d/dx)^n, where n=1,2,3,...; generalization of Stirling numbers of second kind A008277, Lah-numbers A008297.
1, 12, 1, 276, 36, 1, 9384, 1536, 72, 1, 422280, 80040, 4920, 120, 1, 23647680, 4984560, 365400, 12000, 180, 1, 1584394560, 362597760, 30197160, 1205400, 24780, 252, 1, 123582775680, 30229617600, 2778370560, 127834560, 3237360, 45696, 336, 1, 1099867035520
Offset: 1
Examples
1; 12,1; 276,36,1; 9384,1536,72,1; 422280,80040,4920,120,1; 23647680,4984560,365400,12000,180,1; 1584394560,362597760,30197160,1205400,24780,252,1; 123582775680,30229617600,2778370560,127834560,3237360,45696,336,1; 1099867035520,...
Crossrefs
Programs
-
Maple
b[0]:=f(x): for j from 1 to 10 do b[j]:=simplify(x^12*diff(b[j-1],x$1); end do;