A223517 Triangle T(n,k) represents the coefficients of (x^15*d/dx)^n, where n=1,2,3,...; generalization of Stirling numbers of second kind A008277, Lah-numbers A008297.
1, 15, 1, 435, 45, 1, 18705, 2415, 90, 1, 1066185, 158775, 7725, 150, 1, 75699135, 12497985, 722700, 18825, 225, 1, 6434426475, 1150525845, 75372885, 2379300, 38850, 315, 1, 637008221025, 121487010975, 8763187230, 318061485, 6380850, 71610, 420, 1
Offset: 1
Examples
1; 15,1; 435,45,1; 18705,2415,90,1; 1066185,158775,7725,150,1; 75699135,12497985,722700,18825,225,1; 6434426475,1150525845,75372885,2379300,38850,315,1; 637008221025,121487010975,8763187230,318061485,6380850,71610,420,1;
Crossrefs
Programs
-
Maple
b[0]:=f(x): for j from 1 to 10 do b[j]:=simplify(x^15*diff(b[j-1],x$1); end do;