A223524 Triangle S(n, k) by rows: coefficients of 2^(n/2)*(x^(1/2)*d/dx)^n, where n =0, 2, 4, 6, ...
1, 1, 2, 3, 12, 4, 15, 90, 60, 8, 105, 840, 840, 224, 16, 945, 9450, 12600, 5040, 720, 32, 10395, 124740, 207900, 110880, 23760, 2112, 64, 135135, 1891890, 3783780, 2522520, 720720, 96096, 5824, 128, 2027025, 32432400
Offset: 1
Examples
Triangle begins: 1; 1, 2; 3, 12, 4; 15, 90, 60, 8; 105, 840, 840, 224, 16; 945, 9450, 12600, 5040, 720, 32; 10395, 124740, 207900, 110880, 23760, 2112, 64; ... Expansion takes the form: 2^1 (x^(1/2)*d/dx)^2 = 1*d/dx + 2*x*d^2/dx^2. 2^2 (x^(1/2)*d/dx)^4 = 3*d^2/dx^2 + 12*x*d^3/dx^3 + 4*x^2*d^4/dx^4.
Links
- Udita N. Katugampola, Mellin Transforms of Generalized Fractional Integrals and Derivatives, arXiv:1112.6031 [math.CA], 2011-2014; Appl. Math. Comput. 257(2015) 566-580.
- Udita N. Katugampola, Existence and Uniqueness results for a class of Generalized Fractional Differential Equations, arXiv preprint arXiv:1411.5229 [math.CA], 2014-2016.
Programs
-
Maple
a[0]:= f(x): for i from 1 to 20 do a[i]:= simplify(2^((i+1)mod 2)*x^(1/2)*(diff(a[i-1],x$1))); end do: for j from 1 to 10 do b[j]:=a[2j]; end do;
-
Mathematica
Flatten[Abs[Table[CoefficientList[2^n n! LaguerreL[n, -1/2, x], x], {n, 0, 7}]]] (* Ali Pourzand, Mar 28 2025 *)
Comments