cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A223526 Triangle S(n,k) by rows: coefficients of 3^(n/2)*(x^(2/3)*d/dx)^n when n=0,2,4,6,...

Original entry on oeis.org

1, 1, 3, 4, 24, 9, 28, 252, 189, 27, 280, 3360, 3780, 1080, 81, 3640, 54600, 81900, 35100, 5265, 243, 58240, 1048320, 1965600, 1123200, 252720, 23328, 729, 1106560, 23237760, 52284960, 37346400, 11203920, 1551312, 96957, 2187, 24344320, 584263680, 1533692160
Offset: 1

Views

Author

Udita Katugampola, Mar 18 2013

Keywords

Examples

			Triangle begins:
1;
1, 3;
4, 24, 9;
28, 252, 189, 27;
280, 3360, 3780, 1080, 81;
3640, 54600, 81900, 35100, 5265, 243;
58240, 1048320, 1965600, 1123200, 252720, 23328, 729;
1106560, 23237760, 52284960, 37346400, 11203920, 1551312, 96957, 2187;
24344320, 584263680, 1533692160, 1314593280, 492972480, 91010304, 8532216, 384912, 6561;
		

Crossrefs

Programs

  • Maple
    a[0]:= f(x):
    for i from 1 to 20 do
    a[i] := simplify(3^((i+1)mod 2)*x^(((i+1)mod 2+1)/3)*(diff(a[i-1],x$1 )));
    end do:
    for j from 1 to 10 do
    b[j]:=a[2j];
    end do;

Formula

T(n,0) = A007559(n) and T(n,n) = A000244(n) for all n>=0