A223526 Triangle S(n,k) by rows: coefficients of 3^(n/2)*(x^(2/3)*d/dx)^n when n=0,2,4,6,...
1, 1, 3, 4, 24, 9, 28, 252, 189, 27, 280, 3360, 3780, 1080, 81, 3640, 54600, 81900, 35100, 5265, 243, 58240, 1048320, 1965600, 1123200, 252720, 23328, 729, 1106560, 23237760, 52284960, 37346400, 11203920, 1551312, 96957, 2187, 24344320, 584263680, 1533692160
Offset: 1
Examples
Triangle begins: 1; 1, 3; 4, 24, 9; 28, 252, 189, 27; 280, 3360, 3780, 1080, 81; 3640, 54600, 81900, 35100, 5265, 243; 58240, 1048320, 1965600, 1123200, 252720, 23328, 729; 1106560, 23237760, 52284960, 37346400, 11203920, 1551312, 96957, 2187; 24344320, 584263680, 1533692160, 1314593280, 492972480, 91010304, 8532216, 384912, 6561;
Links
- U. N. Katugampola, Mellin Transforms of Generalized Fractional Integrals and Derivatives, Appl. Math. Comput. 257(2015) 566-580.
Programs
-
Maple
a[0]:= f(x): for i from 1 to 20 do a[i] := simplify(3^((i+1)mod 2)*x^(((i+1)mod 2+1)/3)*(diff(a[i-1],x$1 ))); end do: for j from 1 to 10 do b[j]:=a[2j]; end do;