A223527 Triangle S(n,k) by rows: coefficients of 4^((n-1)/2)*(x^(1/4)*d/dx)^n when n=1,3,5,...
1, 5, 4, 45, 72, 16, 585, 1404, 624, 64, 9945, 31824, 21216, 4352, 256, 208845, 835380, 742560, 228480, 26880, 1024, 5221125, 25061400, 27846000, 11424000, 2016000, 153600, 4096, 151412625, 847910700, 1130547600, 579768000, 136416000, 15590400, 831488, 16384
Offset: 1
Examples
Triangle begins: 1; 5, 4; 45, 72, 16; 585, 1404, 624, 64; 9945, 31824, 21216, 4352, 256; 208845, 835380, 742560, 228480, 26880, 1024; 5221125, 25061400, 27846000, 11424000, 2016000, 153600, 4096; 151412625, 847910700, 1130547600, 579768000, 136416000, 15590400, 831488, 16384;
Links
- U. N. Katugampola, Mellin Transforms of Generalized Fractional Integrals and Derivatives, Appl. Math. Comput. 257(2015) 566-580.
- U. N. Katugampola, Existence and Uniqueness results for a class of Generalized Fractional Differential Equations, arXiv preprint arXiv:1411.5229, 2014
Crossrefs
Programs
-
Maple
a[0]:= f(x): for i from 1 to 20 do a[i] := simplify(4^((i+1)mod 2)*x^((2((i+1)mod 2)+1)/4)*(diff(a[i-1],x$1 ))); end do: for j from 1 to 10 do b[j]:=a[2j-1]; end do;