A223528 Triangle S(n,k) by rows: coefficients of 4^(n/2)*(x^(3/4)*d/dx)^n when n=0,2,4,6,...
1, 1, 4, 5, 40, 16, 45, 540, 432, 64, 585, 9360, 11232, 3328, 256, 9945, 198900, 318240, 141440, 21760, 1024, 208845, 5012280, 10024560, 5940480, 1370880, 129024, 4096, 5221125, 146191500, 350859600, 259896000, 79968000, 11289600, 716800, 16384, 151412625
Offset: 1
Examples
Triangle begins: 1; 1, 4; 5, 40, 16; 45, 540, 432, 64; 585, 9360, 11232, 3328, 256; 9945, 198900, 318240, 141440, 21760, 1024; 208845, 5012280, 10024560, 5940480, 1370880, 129024, 4096; 5221125, 146191500, 350859600, 259896000, 79968000, 11289600, 716800, 16384; 151412625, 4845204000, 13566571200, 12059174400, 4638144000, 873062400, 83148800, 3801088, 65536;
Links
- U. N. Katugampola, Mellin Transforms of Generalized Fractional Integrals and Derivatives, Appl. Math. Comput. 257(2015) 566-580.
- U. N. Katugampola, Existence and Uniqueness results for a class of Generalized Fractional Differential Equations, arXiv preprint arXiv:1411.5229, 2014
Crossrefs
Programs
-
Maple
a[0]:= f(x): for i from 1 to 20 do a[i] := simplify(4^((i+1)mod 2)*x^((2((i+1)mod 2)+1)/4)*(diff(a[i-1],x$1 ))); end do: for j from 1 to 10 do b[j]:=a[2j]; end do;