A223529 Triangle S(n,k) by rows: coefficients of 5^((n-1)/2)*(x^(1/5)*d/dx)^n when n=1,3,5,...
1, 6, 5, 66, 110, 25, 1056, 2640, 1200, 125, 22176, 73920, 50400, 10500, 625, 576576, 2402400, 2184000, 682500, 81250, 3125, 17873856, 89369280, 101556000, 42315000, 7556250, 581250, 15625, 643458816, 3753509760, 5118422400, 2665845000, 634725000
Offset: 1
Examples
Triangle begins: 1; 6, 5; 66, 110, 25; 1056, 2640, 1200, 125; 22176, 73920, 50400, 10500, 625; 576576, 2402400, 2184000, 682500, 81250, 3125; 17873856, 89369280, 101556000, 42315000, 7556250, 581250, 15625; 643458816, 3753509760, 5118422400, 2665845000, 634725000, 73237500, 3937500, 78125;
Links
- U. N. Katugampola, Mellin Transforms of Generalized Fractional Integrals and Derivatives, Appl. Math. Comput. 257(2015) 566-580.
- U. N. Katugampola, Existence and Uniqueness results for a class of Generalized Fractional Differential Equations, arXiv preprint arXiv:1411.5229, 2014
Crossrefs
Programs
-
Maple
a[0]:= f(x): for i from 1 to 20 do a[i] := simplify(5^((i+1)mod 2)*x^((3((i+1)mod 2)+1)/5)*(diff(a[i-1],x$1 ))); end do: for j from 1 to 10 do b[j]:=a[2j-1]; end do;