A223531 Triangle S(n,k) by rows: coefficients of 6^((n-1)/2)*(x^(1/6)*d/dx)^n when n=1,3,5,...
1, 7, 6, 91, 156, 36, 1729, 4446, 2052, 216, 43225, 148200, 102600, 21600, 1296, 1339975, 5742750, 5301000, 1674000, 200880, 7776, 49579075, 254978100, 294205500, 123876000, 22297680, 1726272, 46656, 2131900225, 12791401350, 17711171100, 9321669000
Offset: 1
Examples
Triangle begins: 1; 7, 6; 91, 156, 36; 1729, 4446, 2052, 216; 43225, 148200, 102600, 21600, 1296; 1339975, 5742750, 5301000, 1674000, 200880, 7776; 49579075, 254978100, 294205500, 123876000, 22297680, 1726272, 46656; 2131900225, 12791401350, 17711171100, 9321669000, 2237200560, 259803936, 14043456, 279936;
Links
- U. N. Katugampola, Mellin Transforms of Generalized Fractional Integrals and Derivatives, Appl. Math. Comput. 257(2015) 566-580.
- U. N. Katugampola, Existence and Uniqueness results for a class of Generalized Fractional Differential Equations, arXiv preprint arXiv:1411.5229, 2014
Crossrefs
Programs
-
Maple
a[0]:= f(x): for i from 1 to 20 do a[i] := simplify(6^((i+1)mod 2)*x^((4((i+1)mod 2)+1)/6)*(diff(a[i-1],x$1 ))); end do: for j from 1 to 10 do b[j]:=a[2j-1]; end do;