A223535 Coefficients of (x^(1/5)*d/dx)^n for positive integer n.
1, 1, 5, -3, 15, 25, 21, -45, 150, 125, -231, 375, -375, 1250, 625, 693, -981, 750, -375, 1875, 625, -13167, 17199, -11655, 5250, 13125, 3125, 302841, -375417, 237510, -100275, 26250, 26250, 87500, 15625, 8176707, -9773379, 5914755, -2390850, 685125, -78750
Offset: 1
Examples
1; 1, 5; -3, 15, 25; 21, -45, 150, 125; -231, 375, -375, 1250, 625; 693, -981, 750, -375, 1875, 625;
Links
- U. N. Katugampola, Mellin Transforms of Generalized Fractional Integrals and Derivatives, Appl. Math. Comput. 257(2015) 566-580.
Programs
-
Maple
# This will generate the sequence as coefficients of pseudo polynomials # up to a constant multiple. a[0] := f(x): for i to 10 do a[i] := simplify(x^(1/5)*(diff(a[i-1],x$1))) end do;
Formula
G.f.: exp(((1+4/5*x*y)^(5/4)-1)/x).
Comments