A223541 Array T(m,n) = nim-product(2^m,2^n) (m>=0, n>=0) read by antidiagonals.
1, 2, 2, 4, 3, 4, 8, 8, 8, 8, 16, 12, 6, 12, 16, 32, 32, 11, 11, 32, 32, 64, 48, 64, 13, 64, 48, 64, 128, 128, 128, 128, 128, 128, 128, 128, 256, 192, 96, 192, 24, 192, 96, 192, 256, 512, 512, 176, 176, 44, 44, 176, 176, 512, 512, 1024, 768
Offset: 0
Examples
T(1,7) = T(3,5) = 192, the result of the nim-multiplications 2^1*2^7 and 2^3*2^5. The array begins: 1,2,4,8,16,32,64,128,256,... 2,3,8,12,32,48,128,192,512,... 4,8,6,11,64,128,96,176,1024,... 8,12,11,13,128,192,176,208,2048,... 16,32,64,128,24,44,75,141,4096,... 32,48,128,192,44,52,141,198,8192,... 64,128,96,176,75,141,103,185,16384,... 128,192,176,208,141,198,185,222,32768,... 256,512,1024,2048,4096,8192,16384,32768,384,... ...
References
- J. H. Conway, "Integral lexicographic codes." Discrete Mathematics 83.2-3 (1990): 219-235. See Table 4.
Links
- Tilman Piesk, First 128 rows of the matrix, flattened
- Tilman Piesk, Elements of dual matrix (256 SVGs)
- Tilman Piesk, Walsh permutation; nimber multiplication (Wikiversity)
- Tilman Piesk, Class bin and function nimprod (MATLAB code)
Crossrefs
Extensions
Edited by N. J. A. Sloane, Jun 08 2020
Comments