cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A223659 Number of unimodal maps [1..n]->[0..3].

Original entry on oeis.org

1, 4, 16, 50, 130, 296, 610, 1163, 2083, 3544, 5776, 9076, 13820, 20476, 29618, 41941, 58277, 79612, 107104, 142102, 186166, 241088, 308914, 391967, 492871, 614576, 760384, 933976, 1139440, 1381300, 1664546, 1994665, 2377673, 2820148, 3329264
Offset: 0

Views

Author

R. H. Hardin, Mar 25 2013

Keywords

Comments

Column 1 of A223663.
Apparently also column 4 of A071920. - R. J. Mathar, May 17 2014

Examples

			Some solutions for n=3:
  2  2  0  1  1  3  1  0  3  1  2  1  2  1  0  2
  2  2  1  3  3  3  3  2  2  2  2  3  0  1  1  1
  2  0  2  2  0  1  3  3  1  0  3  1  0  1  1  0
		

Crossrefs

Formula

Empirical: a(n) = (1/720)*n^6 + (1/48)*n^5 + (23/144)*n^4 + (9/16)*n^3 + (241/180)*n^2 + (11/12)*n + 1 = 1 + n*(n+1)*(n^4 + 14*n^3 + 101*n^2 + 304*n + 660)/720.
Empirical g.f.: 1-x*(x^2-2*x+2)*(x^4-4*x^3+6*x^2-4*x+2) / (x-1)^7. - R. J. Mathar, May 14 2014

Extensions

a(0)=1 prepended by Alois P. Heinz, Feb 11 2024

A223660 Number of nX2 0..3 arrays with row sums unimodal and column sums inverted unimodal.

Original entry on oeis.org

16, 256, 3060, 29922, 252912, 1912914, 13254601, 85563043, 521069404, 3022541224, 16826714534, 90449485556, 471770734372, 2397374836954, 11909366979539, 57999389713133, 277578926336176, 1308191004875392, 6081976574677816, 27936365857925926, 126946765412455656
Offset: 1

Views

Author

R. H. Hardin, Mar 25 2013

Keywords

Examples

			Some solutions for n=3:
..3..3....3..2....0..0....0..0....3..1....1..0....1..0....2..0....1..3....3..1
..1..3....2..2....1..3....0..1....0..2....2..1....3..1....0..2....2..3....0..3
..1..1....0..3....3..0....2..0....2..0....0..3....1..2....3..0....1..0....1..0
		

Crossrefs

Column 2 of A223663.

Formula

Empirical: a(n) = 31*a(n-1) -437*a(n-2) +3707*a(n-3) -21099*a(n-4) +85029*a(n-5) -249431*a(n-6) +538841*a(n-7) -856504*a(n-8) +988504*a(n-9) -804432*a(n-10) +436752*a(n-11) -141696*a(n-12) +20736*a(n-13).
Empirical g.f.: -x*( 16 -240*x +2116*x^2 -12378*x^3 +51142*x^4 -153984*x^5 +342369*x^6 -562536*x^7 +675688*x^8 -578496*x^9 +336528*x^10 -120960*x^11 +20736*x^12) / ( (-1+4*x)^2 *(x-1)^3 *(3*x-1)^4 *(2*x-1)^4 ). - R. J. Mathar, May 17 2014

A223661 Number of nX3 0..3 arrays with row sums unimodal and column sums inverted unimodal.

Original entry on oeis.org

50, 3060, 141046, 5285887, 169756788, 4836834467, 125226945708, 2997363216275, 67192414310968, 1424909830742272, 28811928773038893, 559031955620162864, 10462533894185251783, 189688734342719058204, 3343610975591843927435
Offset: 1

Views

Author

R. H. Hardin Mar 25 2013

Keywords

Comments

Column 3 of A223663

Examples

			Some solutions for n=3
..0..1..2....0..0..1....1..2..2....1..2..0....1..0..2....0..2..0....2..3..0
..2..1..3....0..0..3....1..2..3....2..1..0....3..1..2....3..0..3....3..2..0
..3..2..1....3..2..1....2..0..0....1..1..1....0..1..2....2..1..0....1..0..3
		

A223658 Number of n X n 0..3 arrays with row sums unimodal and column sums inverted unimodal.

Original entry on oeis.org

4, 256, 141046, 761845474, 44626165058452
Offset: 1

Views

Author

R. H. Hardin Mar 25 2013

Keywords

Comments

Diagonal of A223663

Examples

			Some solutions for n=3
..1..0..2....0..0..1....0..0..1....0..1..0....3..0..2....2..1..3....2..0..2
..3..2..3....2..0..1....2..0..3....3..3..2....1..2..2....3..2..1....0..2..2
..0..1..2....2..1..2....0..2..2....3..1..1....2..2..0....0..2..2....3..1..3
		

A223662 Number of nX4 0..3 arrays with row sums unimodal and column sums inverted unimodal.

Original entry on oeis.org

130, 29922, 5285887, 761845474, 93974096640, 10253839694278, 1013084819998517, 92199924066276051, 7830543600441814997, 626952495503328450002
Offset: 1

Views

Author

R. H. Hardin Mar 25 2013

Keywords

Comments

Column 4 of A223663

Examples

			Some solutions for n=3
..2..2..3..2....0..0..0..0....0..0..0..2....2..2..0..0....2..2..2..2
..2..2..0..2....1..0..0..2....3..0..0..2....2..2..1..0....2..2..1..2
..3..2..0..1....0..1..3..1....2..2..0..0....2..1..3..1....2..0..2..1
		
Showing 1-5 of 5 results.