cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A223665 Number of nX4 0..1 arrays with rows, diagonals and antidiagonals unimodal.

Original entry on oeis.org

11, 121, 948, 6454, 44693, 321163, 2343189, 17087771, 124218846, 901767902, 6546694983, 47541956223, 345294309121, 2507850941319, 18213891195978, 132281285512572, 960713718887517, 6977351377339193, 50674293382202763
Offset: 1

Views

Author

R. H. Hardin Mar 25 2013

Keywords

Comments

Column 4 of A223669

Examples

			Some solutions for n=4
..0..0..0..1....0..1..1..1....0..1..0..0....0..1..0..0....0..1..1..0
..1..1..1..0....0..1..1..1....0..1..0..0....0..1..0..0....0..1..1..0
..1..1..0..0....0..1..1..0....1..0..0..0....0..1..0..0....1..1..1..1
..0..0..1..0....0..0..0..0....0..1..0..0....0..0..1..0....1..1..1..1
		

Formula

Empirical: a(n) = 9*a(n-1) -8*a(n-2) -63*a(n-3) +250*a(n-4) -152*a(n-5) -522*a(n-6) -2735*a(n-7) +4120*a(n-8) +9651*a(n-9) +1347*a(n-10) -13682*a(n-11) -24899*a(n-12) +6443*a(n-13) +11258*a(n-14) +8578*a(n-15) -11567*a(n-16) +8480*a(n-17) +22660*a(n-18) -17587*a(n-19) +2236*a(n-20) +4536*a(n-21) -2700*a(n-22) -864*a(n-23)

A223666 Number of nX5 0..1 arrays with rows, diagonals and antidiagonals unimodal.

Original entry on oeis.org

16, 256, 2527, 18980, 136289, 1023339, 8052573, 64796052, 523162622, 4210122961, 33781534586, 270773273163, 2170507336531, 17404421705191, 139588544598990, 1119608454999432, 8980016929917601, 72024132676487746, 577661751732689211
Offset: 1

Views

Author

R. H. Hardin Mar 25 2013

Keywords

Comments

Column 5 of A223669

Examples

			Some solutions for n=4
..1..1..1..1..0....0..0..1..1..1....1..1..1..1..1....1..1..1..0..0
..0..1..1..1..1....1..1..1..1..1....0..1..1..1..1....0..1..0..0..0
..1..1..1..1..0....0..1..1..1..1....0..1..1..0..0....1..1..1..0..0
..0..1..1..0..0....1..1..1..0..0....1..0..0..0..0....0..0..1..0..0
		

Formula

Empirical: a(n) = 14*a(n-1) -52*a(n-2) +2*a(n-3) +197*a(n-4) +854*a(n-5) -1805*a(n-6) -26237*a(n-7) +86043*a(n-8) -70614*a(n-9) +170464*a(n-10) +399202*a(n-11) -2739146*a(n-12) +4095044*a(n-13) -10039780*a(n-14) +2577182*a(n-15) +24545705*a(n-16) -54040002*a(n-17) +167369490*a(n-18) -85060776*a(n-19) -28060708*a(n-20) -389208891*a(n-21) +459909922*a(n-22) +2683456378*a(n-23) -4388644180*a(n-24) -5542051151*a(n-25) -2414407341*a(n-26) +32349457536*a(n-27) +12515704412*a(n-28) -98186425408*a(n-29) -47665614177*a(n-30) +197523619448*a(n-31) +269900883869*a(n-32) -475417489889*a(n-33) -557567876049*a(n-34) +781710113042*a(n-35) +1046331021897*a(n-36) -847156975368*a(n-37) -2150199310855*a(n-38) +1141102444689*a(n-39) +2763026992524*a(n-40) -1108892309385*a(n-41) -3095005070434*a(n-42) +372805026225*a(n-43) +3825246453473*a(n-44) -381900163490*a(n-45) -3024861283470*a(n-46) +239728926637*a(n-47) +2504270286051*a(n-48) +252573497058*a(n-49) -2433283268771*a(n-50) -401711721919*a(n-51) +374998537102*a(n-52) +1383132583853*a(n-53) -540047390184*a(n-54) +123349296118*a(n-55) +364680760759*a(n-56) -406537833072*a(n-57) +329370465626*a(n-58) -927362054456*a(n-59) +96704047076*a(n-60) -90681009763*a(n-61) +444716709062*a(n-62) +392499685319*a(n-63) -228651167608*a(n-64) -64865394701*a(n-65) -27260982030*a(n-66) -5237026151*a(n-67) +5531571132*a(n-68) -124945968364*a(n-69) +62262537257*a(n-70) +50291998098*a(n-71) -17594004031*a(n-72) -1497064747*a(n-73) -14021053454*a(n-74) +17588728808*a(n-75) -464880468*a(n-76) -4736625394*a(n-77) -1543338426*a(n-78) +962821324*a(n-79) +1113573248*a(n-80) -451839972*a(n-81) -202718964*a(n-82) +36440824*a(n-83) +88759936*a(n-84) -3568528*a(n-85) -21856096*a(n-86) -1651968*a(n-87) +2626688*a(n-88) +1258624*a(n-89) -261376*a(n-90) -184320*a(n-91) +14336*a(n-92) +8192*a(n-93)

A223667 Number of nX6 0..1 arrays with rows, diagonals and antidiagonals unimodal.

Original entry on oeis.org

22, 484, 5913, 49561, 364959, 2715255, 21347949, 176196273, 1493319998, 12752674920, 108775648521, 925164714995, 7854870418554, 66655562324108, 565717490459602, 4802772296256892, 40782742978895315, 346338434126201765
Offset: 1

Views

Author

R. H. Hardin Mar 25 2013

Keywords

Comments

Column 6 of A223669

Examples

			Some solutions for n=4
..0..1..1..0..0..0....0..1..1..0..0..0....0..0..0..0..0..0....0..1..1..1..0..0
..0..0..1..1..1..1....0..1..1..1..1..1....0..0..0..0..0..0....1..1..1..1..0..0
..0..1..1..1..1..1....1..1..1..0..0..0....0..1..1..1..1..0....0..1..1..1..1..0
..0..0..0..1..1..1....0..0..0..0..0..0....0..1..1..1..0..0....0..1..0..0..0..0
		

A223668 Number of nX7 0..1 arrays with rows, diagonals and antidiagonals unimodal.

Original entry on oeis.org

29, 841, 12577, 119150, 920106, 6789502, 51831694, 418107416, 3535212700, 30760010124, 270819014018, 2389382612136, 21054370910762, 185252005692892, 1628826042317036, 14320554615413076, 125935880053887644
Offset: 1

Views

Author

R. H. Hardin Mar 25 2013

Keywords

Comments

Column 7 of A223669

Examples

			Some solutions for n=4
..0..0..0..0..0..0..0....0..0..1..1..1..1..0....0..0..1..0..0..0..0
..0..0..1..0..0..0..0....0..1..1..1..1..1..0....1..1..1..1..1..1..1
..0..0..0..0..0..0..0....1..1..1..1..0..0..0....0..0..0..0..0..1..1
..0..0..1..0..0..0..0....0..1..0..0..0..0..0....0..0..0..0..0..0..0
		

A223670 Number of 3 X n 0..1 arrays with rows, diagonals and antidiagonals unimodal.

Original entry on oeis.org

8, 64, 292, 948, 2527, 5913, 12577, 24821, 46068, 81198, 136930, 222250, 348885, 531823, 789879, 1146307, 1629458, 2273484, 3119088, 4214320, 5615419, 7387701, 9606493, 12358113, 15740896, 19866266, 24859854, 30862662, 38032273, 46544107
Offset: 1

Views

Author

R. H. Hardin, Mar 25 2013

Keywords

Comments

Row 3 of A223669.

Examples

			Some solutions for n=4:
..0..1..1..1....0..1..1..0....0..0..1..1....0..0..0..1....1..0..0..0
..1..1..0..0....0..1..0..0....0..1..0..0....0..0..1..1....0..1..1..1
..0..0..0..0....0..1..1..0....1..0..0..0....0..1..1..0....0..0..0..0
		

Crossrefs

Cf. A223669.

Formula

Empirical: a(n) = (23/360)*n^6 - (3/40)*n^5 + (37/18)*n^4 + (119/24)*n^3 - (3103/360)*n^2 + (997/60)*n - 9 for n>1.
Conjectures from Colin Barker, Mar 16 2018: (Start)
G.f.: x*(8 + 8*x + 12*x^2 - 32*x^3 + 63*x^4 - 16*x^5 + 5*x^6 - 2*x^7) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>8.
(End)

A223671 Number of 4Xn 0..1 arrays with rows, diagonals and antidiagonals unimodal.

Original entry on oeis.org

16, 256, 1723, 6454, 18980, 49561, 119150, 267643, 567197, 1142224, 2198273, 4062420, 7238132, 12477929, 20877528, 33995513, 54002935, 83867606, 127578211, 190413722, 279263958, 403007495, 572953490, 803354343, 1111996481, 1520876908
Offset: 1

Views

Author

R. H. Hardin Mar 25 2013

Keywords

Comments

Row 4 of A223669

Examples

			Some solutions for n=4
..1..0..0..0....0..1..1..0....0..0..0..0....0..1..1..1....0..0..0..1
..0..1..0..0....0..0..0..0....1..1..0..0....0..1..1..0....0..1..1..0
..0..1..1..1....0..1..0..0....0..0..1..1....1..1..1..0....1..0..0..0
..1..0..0..0....0..0..1..0....0..0..0..0....0..1..1..0....0..0..1..0
		

Formula

Empirical: a(n) = (1/112)*n^8 - (19/210)*n^7 + (59/45)*n^6 - (61/120)*n^5 - (8789/144)*n^4 + (99083/120)*n^3 - (10598579/2520)*n^2 + (1548737/140)*n - 11539 for n>6

A223672 Number of 5 X n 0..1 arrays with rows, diagonals and antidiagonals unimodal.

Original entry on oeis.org

32, 1024, 10327, 44693, 136289, 364959, 920106, 2218590, 5118463, 11300965, 23936447, 48791299, 95996333, 182794485, 337692452, 606574002, 1061493687, 1813061935, 3027558649, 4950175307, 7936087995, 12491408683, 19326452244
Offset: 1

Views

Author

R. H. Hardin, Mar 25 2013

Keywords

Comments

Row 5 of A223669.

Examples

			Some solutions for n=4
..1..1..1..0....0..0..1..1....0..0..0..1....1..1..1..1....0..0..1..1
..0..1..0..0....0..0..1..0....0..1..1..1....0..1..1..0....0..1..1..1
..0..0..0..0....0..1..1..0....1..1..1..0....0..0..1..1....0..0..1..1
..0..0..0..0....1..1..1..0....0..1..1..1....0..0..0..1....0..0..1..1
..0..0..0..0....1..1..0..0....1..0..0..0....0..0..0..0....0..0..0..0
		

Crossrefs

Cf. A223669.

Formula

Empirical: a(n) = (359/453600)*n^10 - (391/18144)*n^9 + (5825/12096)*n^8 - (13241/3780)*n^7 - (41189/675)*n^6 + (10637083/4320)*n^5 - (1341019765/36288)*n^4 + (7101447161/22680)*n^3 - (37771550507/25200)*n^2 + (2233774483/630)*n - 2534086 for n>12.

A223673 Number of 6Xn 0..1 arrays with rows, diagonals and antidiagonals unimodal.

Original entry on oeis.org

64, 4096, 61996, 321163, 1023339, 2715255, 6789502, 16634224, 40086061, 94218637, 214377471, 470774847, 998649425, 2051656863, 4092563126, 7942987666, 15025087905, 27743027247, 50072239147, 88451496245, 153108327757
Offset: 1

Views

Author

R. H. Hardin Mar 25 2013

Keywords

Comments

Row 6 of A223669

Examples

			Some solutions for n=4
..0..0..1..0....0..0..0..0....0..0..0..1....0..0..0..1....0..0..0..0
..0..1..0..0....0..0..0..0....0..1..1..0....0..1..1..0....0..0..0..0
..0..0..1..0....1..0..0..0....1..1..1..1....0..1..1..0....0..1..0..0
..0..0..0..1....0..0..0..0....1..1..1..1....1..1..0..0....1..0..0..0
..0..1..1..1....0..1..0..0....1..1..1..0....0..0..0..0....0..1..0..0
..0..1..1..1....0..0..0..0....1..1..1..0....0..0..0..0....0..0..0..0
		

Formula

Empirical: a(n) = (271/5443200)*n^12 - (5527/1995840)*n^11 + (284203/2721600)*n^10 - (97799/51840)*n^9 - (4335667/259200)*n^8 + (68712079/30240)*n^7 - (50002254419/680400)*n^6 + (495395854627/362880)*n^5 - (42767475646507/2721600)*n^4 + (1367715597167/12960)*n^3 - (3261545344751/10800)*n^2 - (3687840940699/6930)*n + 4224261488 for n>20

A223674 Number of 7Xn 0..1 arrays with rows, diagonals and antidiagonals unimodal.

Original entry on oeis.org

128, 16384, 371641, 2343189, 8052573, 21347949, 51831694, 124050234, 299298122, 726344042, 1747724083, 4106362589, 9335920794, 20497890026, 43553671579, 89873040155, 180673406871, 354644672067, 680755779412, 1279369459830
Offset: 1

Views

Author

R. H. Hardin Mar 25 2013

Keywords

Comments

Row 7 of A223669

Examples

			Some solutions for n=3
..0..0..1....0..0..1....0..0..0....0..0..0....0..0..1....0..0..1....0..0..0
..0..1..0....0..1..0....0..0..0....0..0..1....0..1..1....1..0..0....0..0..0
..1..1..1....1..0..0....1..1..1....0..0..1....1..1..0....0..1..1....0..1..1
..0..0..0....0..1..1....0..1..0....0..0..0....1..1..1....0..0..0....0..1..1
..0..0..0....0..1..0....0..0..1....0..0..0....1..0..0....0..0..0....0..0..0
..1..1..1....1..0..0....0..1..0....0..0..1....0..0..0....1..1..1....0..0..1
..1..1..0....1..0..0....0..0..0....1..1..0....0..0..0....1..0..0....0..1..0
		

A223664 Number of n X n 0..1 arrays with rows, diagonals and antidiagonals unimodal.

Original entry on oeis.org

2, 16, 292, 6454, 136289, 2715255, 51831694, 962697852, 17643516790, 323311474180
Offset: 1

Views

Author

R. H. Hardin Mar 25 2013

Keywords

Comments

Diagonal of A223669

Examples

			Some solutions for n=4
..1..0..0..0....1..1..1..0....0..1..0..0....0..1..1..0....0..0..1..0
..0..1..1..0....0..1..1..0....0..0..1..0....0..0..1..0....1..1..1..1
..1..1..0..0....0..1..1..1....0..1..1..0....0..0..1..0....0..1..1..0
..0..1..1..0....0..1..1..1....1..1..1..1....0..0..1..0....0..1..1..1
		
Showing 1-10 of 10 results.