A223682 Number of 4 X n 0..1 arrays with rows and antidiagonals unimodal.
16, 256, 2032, 9822, 35509, 105995, 275775, 646407, 1395174, 2815594, 5372794, 9777124, 17079747, 28794301, 47049089, 74774613, 115931628, 175785252, 261231028, 381179194, 547003777, 773063487, 1077301747, 1481933555
Offset: 1
Keywords
Examples
Some solutions for n=3: ..1..1..0....0..0..1....1..0..0....0..0..0....0..1..1....1..1..0....0..1..0 ..1..1..0....0..0..0....0..1..0....1..1..0....0..1..0....0..1..0....0..0..1 ..0..1..1....0..0..0....1..0..0....0..1..1....0..0..0....1..1..0....1..1..1 ..0..0..1....0..1..1....0..1..0....1..1..0....0..1..1....1..0..0....0..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A223680.
Formula
Empirical: a(n) = (1/112)*n^8 + (79/1260)*n^7 + (121/120)*n^6 + (71/36)*n^5 + (475/48)*n^4 - (1757/180)*n^3 + (8893/840)*n^2 - (569/84)*n + 9.
Conjectures from Colin Barker, Aug 22 2018: (Start)
G.f.: x*(16 + 112*x + 304*x^2 - 594*x^3 + 775*x^4 - 442*x^5 + 216*x^6 - 36*x^7 + 9*x^8) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>9.
(End)
Comments