cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A223692 T(n,k)=Petersen graph (8,2) coloring a rectangular array: number of nXk 0..15 arrays where 0..15 label nodes of a graph with edges 0,1 0,8 8,14 8,10 1,2 1,9 9,15 9,11 2,3 2,10 10,12 3,4 3,11 11,13 4,5 4,12 12,14 5,6 5,13 13,15 6,7 6,14 7,0 7,15 and every array movement to a horizontal or antidiagonal neighbor moves along an edge of this graph.

Original entry on oeis.org

16, 48, 256, 144, 432, 4096, 432, 2304, 3888, 65536, 1296, 12384, 37008, 34992, 1048576, 3888, 66816, 363600, 595584, 314928, 16777216, 11664, 361440, 3788640, 10817856, 9594000, 2834352, 268435456, 34992, 1958400, 40075632, 223096320, 324280368, 154616832, 25509168, 4294967296
Offset: 1

Views

Author

R. H. Hardin, Mar 25 2013

Keywords

Examples

			Table starts:
          16,        48,         144,           432,             1296, ...
         256,       432,        2304,         12384,            66816, ...
        4096,      3888,       37008,        363600,          3788640, ...
       65536,     34992,      595584,      10817856,        223096320, ...
     1048576,    314928,     9594000,     324280368,      13402129824, ...
    16777216,   2834352,   154616832,    9762152544,     814399853760, ...
   268435456,  25509168,  2492365968,  294583794768,   49817845241568, ...
  4294967296, 229582512, 40180445568, 8901308553408, 3059068970173824, ...
Some solutions for n=3 k=4
..2..1..9..1....6..5..4..5....6.14..6.14....4..3..2.10....2..3..4..3
..2..1..9.11....4..5..6.14...12.14..8.14....2.10..2.10....4..3.11.13
..9.11..9.15....6..7..6.14....8..0..8..0....8.10..8.10...11.13.11..9
		

Crossrefs

Column 1 is A001025
Column 2 is 48*9^(n-1)
Row 1 is A188825(n+1)

Formula

Empirical for column k:
k=1: a(n) = 16*a(n-1)
k=2: a(n) = 9*a(n-1)
k=3: a(n) = 24*a(n-1) -127*a(n-2)
k=4: a(n) = 59*a(n-1) -1103*a(n-2) +7621*a(n-3) -16900*a(n-4)
k=5: [order 7] for n>8
k=6: [order 17] for n>18
k=7: [order 37] for n>39
Empirical for row n:
n=1: a(n) = 3*a(n-1)
n=2: a(n) = 8*a(n-1) -11*a(n-2) -16*a(n-3) for n>4
n=3: a(n) = [order 10] for n>12
n=4: a(n) = [order 24] for n>27
n=5: a(n) = [order 56] for n>61