A223707 Conjectured least number k such that prime(n) is the largest divisor of k^3 + 1, or 0 if there is no such k.
1, 2, 0, 3, 0, 4, 0, 8, 0, 0, 6, 11, 122, 7, 0, 582, 0, 14, 30, 212, 9, 24, 82, 88, 36, 1817, 47, 0, 46, 677, 20, 654, 136, 43, 2383, 33, 13, 59, 166, 1037, 210682, 49, 381, 85, 23245, 93, 15, 40, 18613, 95, 5591, 1433, 16, 0, 1798, 788, 26361, 29, 117, 842
Offset: 1
Keywords
Programs
-
Mathematica
nn = 60; t = Table[0, {nn}]; ps = Prime[Range[nn]]; Do[num = n^3 + 1; j = 0; lastP = 0; While[num > 0 && j < nn, j++; p = ps[[j]]; While[Mod[num, p] == 0, lastP = j; num = num/p]];If[num == 1 && t[[lastP]] == 0, t[[lastP]] = n; Print[{lastP, n}]], {n, 10^7}]; t
Comments