A223718 Number of unimodal functions [1..n]->[0..2].
1, 3, 9, 22, 46, 86, 148, 239, 367, 541, 771, 1068, 1444, 1912, 2486, 3181, 4013, 4999, 6157, 7506, 9066, 10858, 12904, 15227, 17851, 20801, 24103, 27784, 31872, 36396, 41386, 46873, 52889, 59467, 66641, 74446, 82918, 92094, 102012, 112711, 124231
Offset: 0
Examples
Some solutions for n=3 ..1....2....0....1....0....2....1....2....0....2....0....1....0....1....0....1 ..2....1....1....1....0....0....0....1....0....2....2....1....1....2....2....2 ..0....1....0....0....1....0....0....0....2....2....1....1....1....2....0....1 From _Joerg Arndt_, Dec 27 2023: (Start) The a(3) = 22 such functions are (dots for zeros) 1: [ . . . ] 2: [ . . 1 ] 3: [ . . 2 ] 4: [ . 1 . ] 5: [ . 1 1 ] 6: [ . 1 2 ] 7: [ . 2 . ] 8: [ . 2 1 ] 9: [ . 2 2 ] 10: [ 1 . . ] 11: [ 1 1 . ] 12: [ 1 1 1 ] 13: [ 1 1 2 ] 14: [ 1 2 . ] 15: [ 1 2 1 ] 16: [ 1 2 2 ] 17: [ 2 . . ] 18: [ 2 1 . ] 19: [ 2 1 1 ] 20: [ 2 2 . ] 21: [ 2 2 1 ] 22: [ 2 2 2 ] (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000 (terms n=1..210 from R. H. Hardin)
- Kyu-Hwan Lee and Se-jin Oh, Catalan triangle numbers and binomial coefficients, arXiv:1601.06685 [math.CO], 2016.
Crossrefs
Formula
a(n) = A071920(n,3) = 1+n*(n+1)*(n^2+5*n+18)/24.
G.f.: 1-x*(x^2-3*x+3)*(x^2-x+1) / (x-1)^5 . a(n) = 1+A051744(n). - R. J. Mathar, May 17 2014
Extensions
a(0)=1 prepended by Alois P. Heinz, Dec 27 2023
Comments