cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A223719 Number of n X 2 0..2 arrays with rows, antidiagonals and columns unimodal.

Original entry on oeis.org

9, 81, 484, 2116, 7396, 21904, 57121, 134689, 292681, 594441, 1140624, 2085136, 3655744, 6180196, 10118761, 16104169, 24990001, 37908649, 56340036, 82192356, 117896164, 166513216, 231861529, 318658201, 432681601, 580954609, 771950656
Offset: 1

Views

Author

R. H. Hardin, Mar 26 2013

Keywords

Comments

Column 2 of A223725.

Examples

			Some solutions for n=3:
..1..0....2..0....1..2....2..0....1..1....2..0....0..2....2..1....1..1....2..2
..1..2....1..2....1..2....0..0....2..2....2..1....2..0....1..1....2..1....1..2
..2..1....1..0....1..2....0..1....0..1....0..0....2..0....1..2....1..1....1..1
		

Formula

Empirical: a(n) = (1/576)*n^8 + (1/48)*n^7 + (41/288)*n^6 + (13/24)*n^5 + (793/576)*n^4 + (31/16)*n^3 + (119/48)*n^2 + (3/2)*n + 1.
Conjectures from Colin Barker, Feb 19 2018: (Start)
G.f.: x*(9 + 79*x^2 - 80*x^3 + 106*x^4 - 68*x^5 + 31*x^6 - 8*x^7 + x^8) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>9.
(End)