cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A223789 T(n,k)=Number of nXk 0..2 arrays with rows, diagonals and antidiagonals unimodal.

Original entry on oeis.org

3, 9, 9, 22, 81, 27, 46, 484, 729, 81, 86, 2116, 8635, 6561, 243, 148, 7396, 62365, 151580, 59049, 729, 239, 21904, 334230, 1560013, 2703137, 531441, 2187, 367, 57121, 1455816, 11012718, 39387861, 48302789, 4782969, 6561, 541, 134689, 5425943
Offset: 1

Views

Author

R. H. Hardin Mar 27 2013

Keywords

Comments

Table starts
.....3..........9............22..............46................86
.....9.........81...........484............2116..............7396
....27........729..........8635...........62365............334230
....81.......6561........151580.........1560013..........11012718
...243......59049.......2703137........39387861.........343454446
...729.....531441......48302789......1026135371.......11150023974
..2187....4782969.....862007289.....27088106846......377163884938
..6561...43046721...15379566078....715394830136....12972494260444
.19683..387420489..274427327200..18858304684055...446829906314726
.59049.3486784401.4896915028511.496722962933967.15355124632228358

Examples

			Some solutions for n=3 k=4
..2..2..2..1....1..2..0..0....1..1..2..2....1..2..1..1....0..0..0..0
..0..2..2..1....0..0..1..0....0..2..2..1....1..1..2..0....0..1..2..0
..2..1..0..0....0..1..0..0....0..2..0..0....2..2..2..2....0..0..1..0
		

Crossrefs

Column 1 is A000244
Column 2 is A001019
Row 1 is A223718
Row 2 is A223719

Formula

Empirical for column k:
k=1: a(n) = 3*a(n-1)
k=2: a(n) = 9*a(n-1)
k=3: [order 15]
k=4: [order 80]
Empirical: rows n=1..5 are polynomials of order 4*n for k>0,0,1,8,15

A223975 T(n,k)=Number of nXk 0..2 arrays with rows and antidiagonals unimodal.

Original entry on oeis.org

3, 9, 9, 22, 81, 27, 46, 484, 729, 81, 86, 2116, 9515, 6561, 243, 148, 7396, 76092, 186004, 59049, 729, 239, 21904, 440628, 2558848, 3628696, 531441, 2187, 367, 57121, 2026448, 22935921, 84988435, 70779056, 4782969, 6561, 541, 134689, 7829639
Offset: 1

Views

Author

R. H. Hardin Mar 30 2013

Keywords

Comments

Table starts
.....3..........9.............22...............46.................86
.....9.........81............484.............2116...............7396
....27........729...........9515............76092.............440628
....81.......6561.........186004..........2558848...........22935921
...243......59049........3628696.........84988435.........1140963027
...729.....531441.......70779056.......2809740785........55803232969
..2187....4782969.....1380511272......92756321858......2708281019793
..6561...43046721....26926081924....3060966419662....131014406127439
.19683..387420489...525177301935..100999995564503...6329626912147424
.59049.3486784401.10243271456697.3332485315028073.305632588672082728

Examples

			Some solutions for n=3 k=4
..0..2..0..0....1..2..2..1....2..1..1..0....1..2..2..0....0..0..0..0
..0..1..2..1....0..0..1..1....1..2..2..2....0..2..1..0....0..2..2..0
..0..1..2..2....0..1..0..0....0..1..1..2....1..1..0..0....0..2..1..1
		

Crossrefs

Column 1 is A000244
Column 2 is A001019
Row 1 is A223718
Row 2 is A223719

Formula

Empirical: columns k=1..6 have recurrences of order 1,1,7,18,43,91
Empirical: rows n=1..7 are polynomials of degree 4*n for k>0,0,0,0,2,3,4

A223742 T(n,k)=Number of nXk 0..2 arrays with rows, columns, diagonals and antidiagonals unimodal.

Original entry on oeis.org

3, 9, 9, 22, 81, 22, 46, 484, 484, 46, 86, 2116, 5600, 2116, 86, 148, 7396, 42090, 42090, 7396, 148, 239, 21904, 237088, 480236, 237088, 21904, 239, 367, 57121, 1082738, 3868968, 3868968, 1082738, 57121, 367, 541, 134689, 4207089, 24527068, 41586328
Offset: 1

Views

Author

R. H. Hardin Mar 26 2013

Keywords

Comments

Table starts
...3......9........22.........46...........86...........148............239
...9.....81.......484.......2116.........7396.........21904..........57121
..22....484......5600......42090.......237088.......1082738........4207089
..46...2116.....42090.....480236......3868968......24527068......129982953
..86...7396....237088....3868968.....41586328.....340038574.....2289596121
.148..21904...1082738...24527068....340038574....3437215802....28017383049
.239..57121...4207089..129982953...2289596121...28017383049...268717054875
.367.134689..14362171..597438379..13281578167..195114520747..2171612995939
.541.292681..44066468.2440360420..68222609208.1200776938428.15433289999394
.771.594441.123591226.9014646324.316008418514.6667000031694

Examples

			Some solutions for n=3 k=4
..0..1..1..2....1..2..1..0....1..1..1..0....0..0..0..0....0..0..1..2
..2..2..2..0....2..2..1..0....2..2..2..2....2..1..1..1....2..2..2..2
..1..2..0..0....0..0..2..0....0..2..1..1....1..2..0..0....0..2..2..1
		

Crossrefs

Column 1 is A223718
Column 2 is A223719

Formula

Empirical: columns k=1..6 are polynomials of degree 4*k for n>0,0,0,6,11,18

A223831 T(n,k)=Number of nXk 0..2 arrays with rows and columns unimodal.

Original entry on oeis.org

3, 9, 9, 22, 81, 22, 46, 484, 484, 46, 86, 2116, 6166, 2116, 86, 148, 7396, 51136, 51136, 7396, 148, 239, 21904, 310396, 738482, 310396, 21904, 239, 367, 57121, 1492552, 7291180, 7291180, 1492552, 57121, 367, 541, 134689, 5995781, 54035194, 111026387
Offset: 1

Views

Author

R. H. Hardin Mar 27 2013

Keywords

Comments

Table starts
...3......9........22..........46............86.............148
...9.....81.......484........2116..........7396...........21904
..22....484......6166.......51136........310396.........1492552
..46...2116.....51136......738482.......7291180........54035194
..86...7396....310396.....7291180.....111026387......1215505987
.148..21904...1492552....54035194....1215505987.....18986502099
.239..57121...5995781...320423509...10278415020....222531132820
.367.134689..20879061..1590193515...70637615542...2068398813560
.541.292681..64727664..6823643014..409495177832..15880238812350
.771.594441.182215264.25942390362.2059270878998.103853282918692

Examples

			Some solutions for n=3 k=4
..1..2..0..0....0..0..1..1....0..2..2..0....1..2..1..0....0..1..1..1
..2..2..0..0....1..2..1..1....0..2..2..2....0..2..1..1....1..1..2..2
..0..2..1..0....0..0..1..1....0..0..2..2....0..1..2..2....0..1..2..1
		

Crossrefs

Column 1 is A223718
Column 2 is A223719

Formula

Empirical: columns k=1..7 are polynomials of degree 4*k
Showing 1-4 of 4 results.