cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A223826 Number of nX3 0..2 arrays with rows and columns unimodal.

Original entry on oeis.org

22, 484, 6166, 51136, 310396, 1492552, 5995781, 20879061, 64727664, 182215264, 472897132, 1144905802, 2610251996, 5646952970, 11664925145, 23128319257, 44207709722, 81762385076, 146787187114, 256501341004, 437310109972
Offset: 1

Views

Author

R. H. Hardin Mar 27 2013

Keywords

Comments

Column 3 of A223831

Examples

			Some solutions for n=3
..0..0..2....1..2..0....1..0..0....2..0..0....1..1..1....1..1..1....1..2..0
..1..2..0....2..2..1....2..2..1....1..1..0....0..1..0....1..1..0....1..1..1
..1..1..0....0..0..0....2..2..0....1..1..2....0..2..0....1..0..0....2..1..0
		

Formula

Empirical: a(n) = (5051/239500800)*n^12 + (17911/39916800)*n^11 + (113633/21772800)*n^10 + (27157/725760)*n^9 + (1331621/7257600)*n^8 + (36461/57600)*n^7 + (35192219/21772800)*n^6 + (2190431/725760)*n^5 + (24210049/5443200)*n^4 + (4187689/907200)*n^3 + (882989/207900)*n^2 + (2173/990)*n + 1

A223827 Number of n X 4 0..2 arrays with rows and columns unimodal.

Original entry on oeis.org

46, 2116, 51136, 738482, 7291180, 54035194, 320423509, 1590193515, 6823643014, 25942390362, 89032405314, 279892497568, 815488308996, 2223043463584, 5714420877205, 13941660959025, 32460302492138, 72461547637300
Offset: 1

Views

Author

R. H. Hardin, Mar 27 2013

Keywords

Comments

Column 4 of A223831.

Examples

			Some solutions for n=3
..2..2..1..0....0..0..2..2....2..2..0..0....0..0..2..2....0..0..0..0
..2..2..1..1....2..2..2..1....2..2..2..2....0..2..2..2....1..1..0..0
..0..2..2..2....0..0..2..0....0..1..2..2....0..0..1..2....0..0..0..1
		

Crossrefs

Cf. A223831.

Formula

Empirical: a(n) = (456419/5230697472000)*n^16 + (35741/12108096000)*n^15 + (154711/2874009600)*n^14 + (1309129/2075673600)*n^13 + (149137159/28740096000)*n^12 + (924691/29568000)*n^11 + (261112321/1828915200)*n^10 + (17095201/33868800)*n^9 + (7372850867/5225472000)*n^8 + (227410163/72576000)*n^7 + (8054484973/1437004800)*n^6 + (6610049/831600)*n^5 + (112396487393/12108096000)*n^4 + (4125505841/504504000)*n^3 + (671183/110880)*n^2 + (27067/10010)*n + 1.

A223828 Number of nX5 0..2 arrays with rows and columns unimodal.

Original entry on oeis.org

86, 7396, 310396, 7291180, 111026387, 1215505987, 10278415020, 70637615542, 409495177832, 2059270878998, 9178828735664, 36883354080922, 135437433227956, 459525932946746, 1453793476211931, 4321377067061981, 12146690423924810
Offset: 1

Views

Author

R. H. Hardin Mar 27 2013

Keywords

Comments

Column 5 of A223831

Examples

			Some solutions for n=3
..0..1..2..2..0....0..0..0..0..0....0..0..0..1..1....0..1..0..0..0
..0..0..0..2..0....0..0..1..0..0....0..1..2..1..1....0..2..2..2..0
..0..0..0..2..2....1..1..1..1..0....1..2..2..0..0....0..1..1..2..1
		

Formula

Empirical: a(n) = (63370093/405483668029440000)*n^20 + (71859847/9357315416064000)*n^19 + (33442223/166295420928000)*n^18 + (7404500641/2134124568576000)*n^17 + (27079914203/627683696640000)*n^16 + (25382116619/62768369664000)*n^15 + (28390454557/9656672256000)*n^14 + (289526123249/17118646272000)*n^13 + (3238876266163/41385738240000)*n^12 + (2848501575259/9656672256000)*n^11 + (17668229482801/19313344512000)*n^10 + (22667715892433/9656672256000)*n^9 + (5949755731841/1188794880000)*n^8 + (32017686101257/3621252096000)*n^7 + (12478274965523/960740352000)*n^6 + (13604598171413/871782912000)*n^5 + (866466410064373/55576160640000)*n^4 + (13639237471/1122750720)*n^3 + (178704902203/22562971200)*n^2 + (15738662/4849845)*n + 1

A223829 Number of nX6 0..2 arrays with rows and columns unimodal.

Original entry on oeis.org

148, 21904, 1492552, 54035194, 1215505987, 18986502099, 222531132820, 2068398813560, 15880238812350, 103853282918692, 592465318954478, 3004359078280776, 13748441004054634, 57481715090022532, 221828958813980507
Offset: 1

Views

Author

R. H. Hardin Mar 27 2013

Keywords

Comments

Column 6 of A223831

Examples

			Some solutions for n=3
..0..0..1..1..1..2....0..0..0..0..0..0....0..0..0..0..0..0....0..0..0..0..1..2
..0..0..1..1..2..2....0..0..1..1..2..1....0..0..0..0..2..0....0..0..1..1..1..1
..0..0..1..1..0..0....0..1..1..1..1..0....0..0..0..1..2..0....0..1..2..2..2..1
		

Formula

Empirical: a(n) = (114400861/793412278431252480000)*n^24 + (9239627879/957482101440184320000)*n^23 + (2294154892207/6744004366665646080000)*n^22 + (31452416351/3930072474746880000)*n^21 + (24193209295183/175168944588718080000)*n^20 + (26794300136633/14597412049059840000)*n^19 + (156064264676147/8066990869217280000)*n^18 + (2841522664487/17237159976960000)*n^17 + (4371737267991827/3796230997278720000)*n^16 + (2108622084806357/316352583106560000)*n^15 + (1962362041518863/60872508702720000)*n^14 + (32606172071712193/248562743869440000)*n^13 + (18855796322583547567/41758540970065920000)*n^12 + (139121898481058809/105450861035520000)*n^11 + (3110633309061530597/949057749319680000)*n^10 + (42100438290827471/6083703521280000)*n^9 + (420754828375884341/33894919618560000)*n^8 + (904804704582195107/48017802792960000)*n^7 + (51548680903180914709/2128789257154560000)*n^6 + (354934053915002447/13646084981760000)*n^5 + (3825468263928720221/162615846032640000)*n^4 + (45410231102313599/2710264100544000)*n^3 + (858998106767/89625135600)*n^2 + (2352186769/669278610)*n + 1

A223830 Number of nX7 0..2 arrays with rows and columns unimodal.

Original entry on oeis.org

239, 57121, 5995781, 320423509, 10278415020, 222531132820, 3529435151262, 43488595659874, 434747752662172, 3644070166673656, 26274461520805174, 166299611386240948, 939231697288055902, 4797427977710396544
Offset: 1

Views

Author

R. H. Hardin Mar 27 2013

Keywords

Comments

Column 7 of A223831

Examples

			Some solutions for n=3
..0..0..0..1..2..1..0....0..0..0..1..1..1..0....0..0..0..0..0..0..2
..0..0..0..1..2..2..0....0..0..0..2..2..1..1....0..0..0..0..1..1..1
..0..0..1..2..2..0..0....0..0..1..1..2..1..0....0..0..0..0..1..1..1
		

Formula

Empirical: a(n) = (1296893401129/16938241367317436694528000000)*n^28 + (72703874510633/10888869450418352160768000000)*n^27 + (2880100345513/9489210850037779660800000)*n^26 + (861351630970627/93067260259985915904000000)*n^25 + (864800892388079/4136322678221596262400000)*n^24 + (2565528977681/696064173067468800000)*n^23 + (7905645181522433/151065697813310472192000)*n^22 + (12259447555207963/20064806380162252800000)*n^21 + (7483863495580993/1257623191919001600000)*n^20 + (3594050229364987331/73570956727261593600000)*n^19 + (49600789259036297/145619527485358080000)*n^18 + (86423411955717683177/42593711789467238400000)*n^17 + (1576780142566456509281/152001089131039948800000)*n^16 + (4463809610643909458677/97714985869954252800000)*n^15 + (251513003138559503557/1447629420295618560000)*n^14 + (130199265024314377939/227773859836723200000)*n^13 + (3852138142774912177207/2366317321637068800000)*n^12 + (298748214070779120271/74464531100467200000)*n^11 + (6476410200562687124239/757348083957104640000)*n^10 + (651582375522581245546751/41383663159084646400000)*n^9 + (81109174434756457340257/3242309791666176000000)*n^8 + (42338611909424523333083/1239706685048832000000)*n^7 + (8270024422491842435867/207147570023116800000)*n^6 + (132002526325134509056651/3366148012875648000000)*n^5 + (2188638685226111310011/68070993149263104000)*n^4 + (249241188258236233/11839806322344000)*n^3 + (742497212342827/64314997306560)*n^2 + (84445539769/20078358300)*n + 1

A223825 Number of n X n 0..2 arrays with rows and columns unimodal.

Original entry on oeis.org

3, 81, 6166, 738482, 111026387, 18986502099, 3529435151262, 698068937559304
Offset: 1

Views

Author

R. H. Hardin Mar 27 2013

Keywords

Comments

Diagonal of A223831

Examples

			Some solutions for n=3
..0..2..2....0..1..1....1..2..1....1..1..2....1..2..0....1..2..1....0..2..0
..0..0..0....0..1..1....2..2..2....2..1..0....0..2..2....0..0..0....2..2..0
..1..0..0....0..2..1....0..0..0....2..2..0....0..1..1....0..0..0....1..1..1
		
Showing 1-6 of 6 results.