cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A223737 Number of nX3 0..2 arrays with rows, columns, diagonals and antidiagonals unimodal.

Original entry on oeis.org

22, 484, 5600, 42090, 237088, 1082738, 4207089, 14362171, 44066468, 123591226, 321014080, 780210492, 1789329904, 3899021174, 8119048135, 16234703963, 31301451138, 58398476624, 105750499888, 186363500950, 320365509352
Offset: 1

Views

Author

R. H. Hardin Mar 26 2013

Keywords

Comments

Column 3 of A223742

Examples

			Some solutions for n=3
..1..0..0....2..1..1....1..0..0....2..2..0....0..2..0....0..1..2....1..1..0
..1..0..0....2..2..0....0..1..1....0..2..2....0..2..2....0..1..0....0..0..0
..1..1..0....2..0..0....0..0..0....0..0..0....2..1..0....0..0..0....0..0..0
		

Formula

Empirical: a(n) = (5051/239500800)*n^12 + (9539/39916800)*n^11 + (75941/21772800)*n^10 + (79/3840)*n^9 + (160763/1036800)*n^8 + (647089/1209600)*n^7 + (42743903/21772800)*n^6 + (1895941/725760)*n^5 + (37871509/5443200)*n^4 + (109751/43200)*n^3 + (125047/14850)*n^2 - (14101/1155)*n + 11

A223738 Number of n X 4 0..2 arrays with rows, columns, diagonals and antidiagonals unimodal.

Original entry on oeis.org

46, 2116, 42090, 480236, 3868968, 24527068, 129982953, 597438379, 2440360420, 9014646324, 30516683840, 95673407206, 280189387450, 772054552094, 2013904240777, 4999298886201, 11864241181898, 27024721429998
Offset: 1

Views

Author

R. H. Hardin, Mar 26 2013

Keywords

Comments

Column 4 of A223742.

Examples

			Some solutions for n=3
..1..1..1..0....1..0..0..0....0..0..2..1....0..1..2..2....1..0..0..0
..2..2..2..1....0..1..2..2....1..1..2..0....0..0..1..2....2..2..2..0
..2..0..0..0....0..0..2..2....1..0..0..0....0..0..1..2....2..2..2..1
		

Crossrefs

Cf. A223742.

Formula

Empirical: a(n) = (456419/5230697472000)*n^16 + (165527/653837184000)*n^15 + (6741457/261534873600)*n^14 + (1421311/18681062400)*n^13 + (7617457/4105728000)*n^12 + (19582007/1026432000)*n^11 - (63058463/1828915200)*n^10 + (1056206617/914457600)*n^9 + (19216393349/36578304000)*n^8 - (11500149887/326592000)*n^7 + (100418946673/205286400)*n^6 - (160502953561/51321600)*n^5 + (51589184233711/4036032000)*n^4 - (15461118743597/504504000)*n^3 + (18492215887/672672)*n^2 + (3967393411/90090)*n - 95767 for n>6.

A223739 Number of nX5 0..2 arrays with rows, columns, diagonals and antidiagonals unimodal.

Original entry on oeis.org

86, 7396, 237088, 3868968, 41586328, 340038574, 2289596121, 13281578167, 68222609208, 316008418514, 1337293881157, 5222063556941, 18967899632349, 64513878383831, 206644044321249, 626458582331341, 1805406612393872
Offset: 1

Views

Author

R. H. Hardin Mar 26 2013

Keywords

Comments

Column 5 of A223742

Examples

			Some solutions for n=3
..0..0..2..0..0....0..0..1..2..2....0..0..1..2..0....0..0..1..1..1
..0..0..2..2..2....1..2..2..2..0....0..0..2..2..2....0..0..2..1..0
..0..1..2..1..1....1..1..2..0..0....0..0..0..1..1....0..0..2..0..0
		

Formula

Empirical: a(n) = (63370093/405483668029440000)*n^20 - (268330757/121645100408832000)*n^19 + (13774799/121949975347200)*n^18 - (2424889373/2134124568576000)*n^17 + (18925169/1107025920000)*n^16 + (11462071/62705664000)*n^15 - (29544684331/5021469573120)*n^14 + (20545808232973/188305108992000)*n^13 - (12540957049199/13795246080000)*n^12 + (41582497189459/9656672256000)*n^11 - (2781361848649/61312204800)*n^10 + (2584592276085773/1379524608000)*n^9 - (6240419528063566523/156920924160000)*n^8 + (23876233435912776007/47076277248000)*n^7 - (1929147516259295957/448345497600)*n^6 + (5962644577920598223/237758976000)*n^5 - (66236190322655654183/661620960000)*n^4 + (14575286592197809/53856000)*n^3 - (12552295491184305071/24443218800)*n^2 + (15114021973648951/19399380)*n - 808791295 for n>11

A223740 Number of nX6 0..2 arrays with rows, columns, diagonals and antidiagonals unimodal.

Original entry on oeis.org

148, 21904, 1082738, 24527068, 340038574, 3437215802, 28017383049, 195114520747, 1200776938428, 6667000031694, 33855136108849, 158770607250059, 692749181797191, 2828862453161793, 10864955922680147, 39417487036715031
Offset: 1

Views

Author

R. H. Hardin Mar 26 2013

Keywords

Comments

Column 6 of A223742

Examples

			Some solutions for n=3
..0..0..0..1..1..2....0..0..0..2..1..0....0..0..1..1..0..0....0..0..0..0..0..0
..0..0..0..1..2..2....0..0..1..2..1..1....0..0..1..1..2..0....0..0..2..2..2..2
..0..0..1..1..1..1....0..0..1..1..1..0....0..0..0..1..2..2....2..2..1..1..0..0
		

Formula

Empirical: a(n) = (114400861/793412278431252480000)*n^24 - (51075794587/8617338912961658880000)*n^23 + (1980369833107/6744004366665646080000)*n^22 - (10175245261/1277273554292736000)*n^21 + (1636653578471/10304055564042240000)*n^20 + (1969068275129/14597412049059840000)*n^19 - (992154752050453/8066990869217280000)*n^18 + (146561615547371/29877743960064000)*n^17 - (419840704716587677/3796230997278720000)*n^16 + (43611886853741881/28759325736960000)*n^15 - (426135162517318237/60872508702720000)*n^14 - (1461996088631538851/6214068596736000)*n^13 + (341585746531181711516743/41758540970065920000)*n^12 - (18495577502515890115483/105450861035520000)*n^11 + (3017647739520402646603697/949057749319680000)*n^10 - (787602150530565904976843/15817629155328000)*n^9 + (21676051131880174432691909/33894919618560000)*n^8 - (307946068460663534824170109/48017802792960000)*n^7 + (103203788635493619721225240009/2128789257154560000)*n^6 - (864678379682656262490199981/3225438268416000)*n^5 + (10065213443478593696277188029/9565638001920000)*n^4 - (7780601713723052220368499439/2710264100544000)*n^3 + (755525652858782115616121/134437703400)*n^2 - (7954542427408468560391/892371480)*n + 10219818700267 for n>18

A223736 Number of n X n 0..2 arrays with rows, columns, diagonals and antidiagonals unimodal.

Original entry on oeis.org

3, 81, 5600, 480236, 41586328, 3437215802, 268717054875, 19964011820443
Offset: 1

Views

Author

R. H. Hardin Mar 26 2013

Keywords

Comments

Diagonal of A223742

Examples

			Some solutions for n=3
..0..1..0....0..0..0....2..0..0....1..1..1....0..2..0....2..2..2....1..2..0
..0..0..0....1..2..2....2..1..0....1..1..2....0..2..2....2..2..1....2..2..2
..0..0..0....2..2..2....2..2..1....0..1..0....0..0..1....1..2..1....1..1..2
		

A223741 Number of nX7 0..2 arrays with rows, columns, diagonals and antidiagonals unimodal.

Original entry on oeis.org

239, 57121, 4207089, 129982953, 2289596121, 28017383049, 268717054875, 2171612995939, 15433289999394, 98940871306124, 581277319267903, 3162355311990371, 16049547130078535
Offset: 1

Views

Author

R. H. Hardin Mar 26 2013

Keywords

Comments

Column 7 of A223742

Examples

			Some solutions for n=3
..0..0..0..0..1..1..0....0..0..0..1..1..1..2....0..0..0..0..0..2..0
..0..0..1..2..2..2..1....0..0..0..1..1..2..0....0..0..0..0..2..2..0
..0..0..0..2..2..2..0....0..0..0..1..1..1..0....0..0..0..0..1..0..0
		
Showing 1-6 of 6 results.