cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A223740 Number of nX6 0..2 arrays with rows, columns, diagonals and antidiagonals unimodal.

Original entry on oeis.org

148, 21904, 1082738, 24527068, 340038574, 3437215802, 28017383049, 195114520747, 1200776938428, 6667000031694, 33855136108849, 158770607250059, 692749181797191, 2828862453161793, 10864955922680147, 39417487036715031
Offset: 1

Views

Author

R. H. Hardin Mar 26 2013

Keywords

Comments

Column 6 of A223742

Examples

			Some solutions for n=3
..0..0..0..1..1..2....0..0..0..2..1..0....0..0..1..1..0..0....0..0..0..0..0..0
..0..0..0..1..2..2....0..0..1..2..1..1....0..0..1..1..2..0....0..0..2..2..2..2
..0..0..1..1..1..1....0..0..1..1..1..0....0..0..0..1..2..2....2..2..1..1..0..0
		

Formula

Empirical: a(n) = (114400861/793412278431252480000)*n^24 - (51075794587/8617338912961658880000)*n^23 + (1980369833107/6744004366665646080000)*n^22 - (10175245261/1277273554292736000)*n^21 + (1636653578471/10304055564042240000)*n^20 + (1969068275129/14597412049059840000)*n^19 - (992154752050453/8066990869217280000)*n^18 + (146561615547371/29877743960064000)*n^17 - (419840704716587677/3796230997278720000)*n^16 + (43611886853741881/28759325736960000)*n^15 - (426135162517318237/60872508702720000)*n^14 - (1461996088631538851/6214068596736000)*n^13 + (341585746531181711516743/41758540970065920000)*n^12 - (18495577502515890115483/105450861035520000)*n^11 + (3017647739520402646603697/949057749319680000)*n^10 - (787602150530565904976843/15817629155328000)*n^9 + (21676051131880174432691909/33894919618560000)*n^8 - (307946068460663534824170109/48017802792960000)*n^7 + (103203788635493619721225240009/2128789257154560000)*n^6 - (864678379682656262490199981/3225438268416000)*n^5 + (10065213443478593696277188029/9565638001920000)*n^4 - (7780601713723052220368499439/2710264100544000)*n^3 + (755525652858782115616121/134437703400)*n^2 - (7954542427408468560391/892371480)*n + 10219818700267 for n>18