cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A223756 Number of n X 2 0..3 arrays with rows, antidiagonals and columns unimodal.

Original entry on oeis.org

16, 256, 2500, 16900, 87616, 372100, 1352569, 4338889, 12559936, 33362176, 82373776, 190992400, 419266576, 877225924, 1759047481, 3396208729, 6338070544, 11471266816, 20192978404, 34657779556, 58123423744, 95427859396
Offset: 1

Views

Author

R. H. Hardin, Mar 27 2013

Keywords

Comments

Column 2 of A223762.

Examples

			Some solutions for n=3:
..3..2....0..0....0..0....1..2....0..3....2..1....1..3....0..0....3..1....3..1
..2..0....1..1....1..2....3..2....1..3....2..3....3..3....0..0....1..0....2..3
..2..0....3..0....1..2....0..0....2..1....1..3....3..2....0..3....1..0....0..3
		

Formula

Empirical: a(n) = (1/518400)*n^12 + (1/17280)*n^11 + (91/103680)*n^10 + (71/8640)*n^9 + (9101/172800)*n^8 + (457/1920)*n^7 + (81397/103680)*n^6 + (497/270)*n^5 + (203687/64800)*n^4 + (1933/540)*n^3 + (2533/720)*n^2 + (11/6)*n + 1.
a(n) = A223659(n)^2. - Mark van Hoeij, May 14 2013
Conjectures from Colin Barker, Feb 19 2018: (Start)
G.f.: x*(16 + 48*x + 420*x^2 - 208*x^3 + 1140*x^4 - 1260*x^5 + 1401*x^6 - 1044*x^7 + 597*x^8 - 244*x^9 + 69*x^10 - 12*x^11 + x^12) / (1 - x)^13.
a(n) = 13*a(n-1) - 78*a(n-2) + 286*a(n-3) - 715*a(n-4) + 1287*a(n-5) - 1716*a(n-6) + 1716*a(n-7) - 1287*a(n-8) + 715*a(n-9) - 286*a(n-10) + 78*a(n-11) - 13*a(n-12) + a(n-13) for n>13.
(End)