cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A223801 T(n,k)=Number of nXk 0..3 arrays with rows and antidiagonals unimodal.

Original entry on oeis.org

4, 16, 16, 50, 256, 64, 130, 2500, 4096, 256, 296, 16900, 110116, 65536, 1024, 610, 87616, 1658703, 4816168, 1048576, 4096, 1163, 372100, 16979881, 151310069, 210163664, 16777216, 16384, 2083, 1352569, 131295500, 2844578252, 13602542576
Offset: 1

Views

Author

R. H. Hardin Mar 27 2013

Keywords

Comments

Table starts
.......4............16................50..................130
......16...........256..............2500................16900
......64..........4096............110116..............1658703
.....256.........65536...........4816168............151310069
....1024.......1048576.........210163664..........13602542576
....4096......16777216........9169032476........1216562667529
...16384.....268435456......400006582368......108631485025292
...65536....4294967296....17450517286804.....9695922803812530
..262144...68719476736...761287955888788...865293308203272685
.1048576.1099511627776.33211580867804324.77218182866179219113

Examples

			Some solutions for n=3 k=4
..0..0..0..3....0..0..1..1....0..2..3..3....0..2..3..1....0..2..1..1
..1..2..2..3....0..2..3..3....2..2..2..0....0..0..0..0....2..2..2..3
..1..1..3..2....0..1..1..2....2..1..0..0....0..0..2..3....2..2..1..0
		

Crossrefs

Column 1 is A000302
Column 2 is A001025
Row 1 is A223659
Row 2 is A223756

Formula

Empirical for column k:
k=1: a(n) = 4*a(n-1)
k=2: a(n) = 16*a(n-1)
k=3: [order 10]
k=4: [order 27]
Empirical: rows n=1..6 are polynomials of degree 6*n for k>0,0,0,0,2,3

A223876 T(n,k)=Number of nXk 0..3 arrays with rows, diagonals and antidiagonals unimodal.

Original entry on oeis.org

4, 16, 16, 50, 256, 64, 130, 2500, 4096, 256, 296, 16900, 99223, 65536, 1024, 610, 87616, 1336985, 3863372, 1048576, 4096, 1163, 372100, 12520369, 88682677, 152918517, 16777216, 16384, 2083, 1352569, 90648289, 1271992512, 5941888105
Offset: 1

Views

Author

R. H. Hardin Mar 28 2013

Keywords

Comments

Table starts
.......4............16................50..................130
......16...........256..............2500................16900
......64..........4096.............99223..............1336985
.....256.........65536...........3863372.............88682677
....1024.......1048576.........152918517...........5941888105
....4096......16777216........6066668157.........411716468431
...16384.....268435456......240345697904.......28928809433978
...65536....4294967296.....9519219712534.....2033941972287214
..262144...68719476736...377068749332794...142745781634483746
.1048576.1099511627776.14936662560715369.10010372252279889400

Examples

			Some solutions for n=3 k=4
..0..0..0..1....0..0..0..3....0..2..3..3....0..0..0..2....0..0..0..0
..2..2..2..3....2..2..3..3....2..2..3..1....0..2..2..2....0..0..0..3
..2..3..1..1....0..1..2..3....1..1..3..1....2..2..2..1....1..1..3..1
		

Crossrefs

Column 1 is A000302
Column 2 is A001025
Row 1 is A223659
Row 2 is A223756

Formula

Empirical for column k:
k=1: a(n) = 4*a(n-1)
k=2: a(n) = 16*a(n-1)
k=3: [recurrence of order 28]
Empirical: rows n=1..4 are polynomials of degree 6*n for k>0,0,1,10

A223850 T(n,k)=Number of nXk 0..3 arrays with rows and columns unimodal.

Original entry on oeis.org

4, 16, 16, 50, 256, 50, 130, 2500, 2500, 130, 296, 16900, 64660, 16900, 296, 610, 87616, 1006318, 1006318, 87616, 610, 1163, 372100, 10804883, 32464394, 10804883, 372100, 1163, 2083, 1352569, 87613063, 664770145, 664770145, 87613063, 1352569, 2083
Offset: 1

Views

Author

R. H. Hardin Mar 27 2013

Keywords

Comments

Table starts
....4.......16..........50............130...............296................610
...16......256........2500..........16900.............87616.............372100
...50.....2500.......64660........1006318..........10804883...........87613063
..130....16900.....1006318.......32464394.........664770145.........9625018705
..296....87616....10804883......664770145.......24291817048.......594861333098
..610...372100....87613063.....9625018705......594861333098.....23571122875874
.1163..1352569...570145144...106061178908....10609537390768....655695544507798
.2083..4338889..3107412546...936977517660...146233793223364..13664368909406118
.3544.12559936.14632983606..6894239747078..1627190607796056.223826020405698042
.5776.33362176.60951077586.43487182160312.15110227641526318

Examples

			Some solutions for n=3 k=4
..0..3..3..0....0..2..3..2....0..2..2..0....0..1..2..2....0..0..1..1
..0..0..3..2....0..1..3..3....0..3..2..0....0..2..3..0....1..1..2..1
..0..0..1..0....0..0..3..0....0..1..3..2....0..2..1..0....0..0..1..0
		

Crossrefs

Column 1 is A223659
Column 2 is A223756

Formula

Empirical: columns k=1..5 are polynomials of degree 6*k

A223811 T(n,k)=Number of nXk 0..3 arrays with rows, columns, diagonals and antidiagonals unimodal.

Original entry on oeis.org

4, 16, 16, 50, 256, 50, 130, 2500, 2500, 130, 296, 16900, 58806, 16900, 296, 610, 87616, 825896, 825896, 87616, 610, 1163, 372100, 8165133, 20847008, 8165133, 372100, 1163, 2083, 1352569, 62305953, 342521725, 342521725, 62305953, 1352569, 2083
Offset: 1

Views

Author

R. H. Hardin Mar 27 2013

Keywords

Comments

Table starts
....4.......16..........50............130.............296.............610
...16......256........2500..........16900...........87616..........372100
...50.....2500.......58806.........825896.........8165133........62305953
..130....16900......825896.......20847008.......342521725......4146732319
..296....87616.....8165133......342521725......8597979566....151474085262
..610...372100....62305953.....4146732319....151474085262...3678996027680
.1163..1352569...388531932....39816673636...2058985931297..66795003874023
.2083..4338889..2057610878...317796753758..22901512677629.975436194200049
.3544.12559936..9513089522..2176384736806.216485354275124
.5776.33362176.39201336756.13081738670880

Examples

			Some solutions for n=3 k=4
..0..0..3..0....1..1..1..1....0..1..0..0....0..0..2..1....0..0..3..1
..0..0..2..2....0..2..3..1....1..2..3..2....1..3..2..1....0..1..3..1
..0..2..2..0....0..2..2..1....1..2..2..3....0..2..3..3....1..3..0..0
		

Crossrefs

Column 1 is A223659
Column 2 is A223756

Formula

Empirical: columns k=1..5 are polynomials of degree 6*k for n>0,0,0,8,15
Showing 1-4 of 4 results.