cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A223795 Number of n X n 0..3 arrays with rows and antidiagonals unimodal.

Original entry on oeis.org

4, 256, 110116, 151310069, 453578376041, 2401987689157097, 19618352087687868206, 225161556703631799074083, 3396567436573176749810085543, 64088930629934993395801694394536
Offset: 1

Views

Author

R. H. Hardin Mar 27 2013

Keywords

Comments

Diagonal of A223801

Examples

			Some solutions for n=3
..0..0..0....0..1..1....2..1..1....2..3..1....2..1..0....2..1..1....2..3..2
..3..0..0....0..2..0....0..3..2....0..3..0....0..2..3....0..3..3....1..3..1
..0..0..0....1..2..2....1..2..3....0..0..1....3..3..1....0..2..2....3..3..1
		

A223796 Number of nX3 0..3 arrays with rows and antidiagonals unimodal.

Original entry on oeis.org

50, 2500, 110116, 4816168, 210163664, 9169032476, 400006582368, 17450517286804, 761287955888788, 33211580867804324, 1448872354425344280, 63207803924281966208, 2757473052802943936172, 120296184397162010680224
Offset: 1

Views

Author

R. H. Hardin Mar 27 2013

Keywords

Comments

Column 3 of A223801

Examples

			Some solutions for n=3
..3..2..0....1..2..3....0..1..2....2..2..2....3..1..1....1..1..3....1..1..3
..2..2..1....2..3..2....1..2..3....2..2..2....3..2..2....2..3..3....0..3..3
..3..3..2....2..0..0....2..3..3....1..3..3....1..2..3....1..2..2....1..2..1
		

Formula

Empirical: a(n) = 50*a(n-1) -253*a(n-2) -1283*a(n-3) +8456*a(n-4) -10020*a(n-5) -12064*a(n-6) +27360*a(n-7) -6656*a(n-8) -9728*a(n-9) +4096*a(n-10)

A223797 Number of nX4 0..3 arrays with rows and antidiagonals unimodal.

Original entry on oeis.org

130, 16900, 1658703, 151310069, 13602542576, 1216562667529, 108631485025292, 9695922803812530, 865293308203272685, 77218182866179219113, 6890814828420641198100, 614921940899081513160269
Offset: 1

Views

Author

R. H. Hardin Mar 27 2013

Keywords

Comments

Column 4 of A223801

Examples

			Some solutions for n=3
..0..0..1..1....0..0..2..3....0..0..2..1....0..0..2..1....0..0..0..2
..2..2..2..0....1..2..2..1....2..2..3..3....0..0..2..2....0..0..3..2
..0..1..2..1....0..1..3..1....0..1..2..2....0..3..0..0....3..2..2..1
		

Formula

Empirical: a(n) = 130*a(n-1) -4151*a(n-2) +55367*a(n-3) -1103289*a(n-4) +25676564*a(n-5) -311713584*a(n-6) +2153547070*a(n-7) -14084700670*a(n-8) +111538734736*a(n-9) -678666743150*a(n-10) +3151156493032*a(n-11) -15705615808280*a(n-12) +74227237529348*a(n-13) -265525650225285*a(n-14) +858145104057893*a(n-15) -2835818034237058*a(n-16) +7784228337705693*a(n-17) -17375928755819704*a(n-18) +37062908059029592*a(n-19) -69764230981154356*a(n-20) +99762651233668576*a(n-21) -119132184363098064*a(n-22) +127177566453563712*a(n-23) -90807087696380928*a(n-24) +28396177139635200*a(n-25) -1473691515457536*a(n-26) +18962192793600*a(n-27)

A223798 Number of n X 5 0..3 arrays with rows and antidiagonals unimodal.

Original entry on oeis.org

296, 87616, 16979881, 2844578252, 453578376041, 70950413903439, 11005258705825234, 1701108873516414461, 262573419115915016653, 40505547476599298757032, 6247008370524009857378298
Offset: 1

Views

Author

R. H. Hardin, Mar 27 2013

Keywords

Comments

Column 5 of A223801.

Examples

			Some solutions for n=3
..0..0..3..3..1....0..0..3..1..0....0..0..1..3..1....0..0..2..2..0
..0..0..2..3..3....0..0..2..2..1....0..0..0..3..1....0..0..0..1..1
..0..1..3..3..2....0..0..0..1..0....0..0..0..0..1....0..0..1..2..1
		

Crossrefs

Cf. A223801.

A223799 Number of nX6 0..3 arrays with rows and antidiagonals unimodal.

Original entry on oeis.org

610, 372100, 131295500, 37217420249, 9658691177678, 2401987689157097, 584566278788358762, 140706704179577280652, 33682261034207872011248, 8040572062005220287891916, 1916764185795334806820505504
Offset: 1

Views

Author

R. H. Hardin Mar 27 2013

Keywords

Comments

Column 6 of A223801

Examples

			Some solutions for n=3
..0..0..0..0..2..0....0..0..0..1..2..1....0..0..0..0..3..3....0..0..0..1..1..1
..0..0..0..3..0..0....0..0..0..2..3..2....0..0..0..2..2..0....0..0..0..2..2..0
..0..0..1..3..2..2....0..0..0..0..2..1....0..0..0..1..1..0....0..0..0..1..2..3
		

A223800 Number of nX7 0..3 arrays with rows and antidiagonals unimodal.

Original entry on oeis.org

1163, 1352569, 818316500, 370255807510, 147492079608804, 54863639440148543, 19618352087687868206, 6858114712379977473803, 2366525095854843153846166, 810568137864555472117760103, 276450663558980453778169837060
Offset: 1

Views

Author

R. H. Hardin Mar 27 2013

Keywords

Comments

Column 7 of A223801

Examples

			Some solutions for n=3
..0..0..0..0..0..0..3....0..0..0..0..0..0..2....0..0..0..0..0..0..2
..0..0..0..0..0..3..2....0..0..0..0..0..3..0....0..0..0..0..3..2..2
..0..0..0..2..3..2..1....0..0..0..2..2..2..2....0..0..0..1..2..2..1
		

A223802 Number of 3Xn 0..3 arrays with rows and antidiagonals unimodal.

Original entry on oeis.org

64, 4096, 110116, 1658703, 16979881, 131295500, 818316500, 4293683039, 19561009057, 79169569680, 289707943960, 971844411710, 3021916484046, 8789182733640, 24090737306249, 62620436201529, 155188103218258
Offset: 1

Views

Author

R. H. Hardin Mar 27 2013

Keywords

Comments

Row 3 of A223801

Examples

			Some solutions for n=3
..2..2..0....2..3..3....3..1..0....2..0..0....0..3..1....2..1..0....1..2..2
..3..1..0....2..2..1....2..1..1....0..0..3....3..2..1....1..3..1....1..2..0
..1..1..3....1..2..0....3..3..0....1..3..1....2..2..0....1..3..1....3..1..0
		

Formula

Empirical: a(n) = (89/169374965760)*n^18 + (811/30536352000)*n^17 + (94651/130767436800)*n^16 + (32953/2554051500)*n^15 + (353321/2134978560)*n^14 + (42487607/26687232000)*n^13 + (2427919/205286400)*n^12 + (329331899/4790016000)*n^11 + (2304632003/7315660800)*n^10 + (10342060619/9144576000)*n^9 + (4533016361/1437004800)*n^8 + (13748687149/2052864000)*n^7 + (50457321263/4670265600)*n^6 + (22295176297/1796256000)*n^5 + (1377479947/136216080)*n^4 + (30053444821/9081072000)*n^3 + (2978057767/367567200)*n^2 + (16725/2431)*n + 1

A223803 Number of 4Xn 0..3 arrays with rows and antidiagonals unimodal.

Original entry on oeis.org

256, 65536, 4816168, 151310069, 2844578252, 37217420249, 370255807510, 2967702264487, 19953618004020, 115901407902175, 594677748128499, 2742258352954012, 11522283571283326, 44607717280309708, 160585424830894289
Offset: 1

Views

Author

R. H. Hardin Mar 27 2013

Keywords

Comments

Row 4 of A223801

Examples

			Some solutions for n=3
..0..0..0....0..0..2....0..0..0....0..0..2....0..0..2....0..0..0....0..0..2
..0..0..3....0..2..3....2..2..1....0..2..3....1..2..0....1..2..0....1..2..0
..0..1..0....0..3..0....1..2..0....1..3..1....3..2..0....0..3..0....2..3..2
..1..2..2....3..0..0....0..3..3....0..0..3....0..3..3....1..1..3....3..3..3
		

Formula

Empirical: a(n) = (1224989653/34469355651846635520000)*n^24 + (1274345773/470036667979726848000)*n^23 + (89684176061/749333818518405120000)*n^22 + (92332596599/25545471085854720000)*n^21 + (3678754549/45368802017280000)*n^20 + (80494587659/57244753133568000)*n^19 + (1442890795373/74694359900160000)*n^18 + (17944065812311/84031154887680000)*n^17 + (808497136964749/421803444142080000)*n^16 + (887979405310979/63270516621312000)*n^15 + (712542665498819/8497871585280000)*n^14 + (511835344841201/1255367393280000)*n^13 + (2484047083210032763/1546612628520960000)*n^12 + (29342532497594837/5751865147392000)*n^11 + (124717183755287231/9586441912320000)*n^10 + (524203224847641397/19772036444160000)*n^9 + (23382114961946647/547211427840000)*n^8 + (33110696329013011/640237370572800)*n^7 + (78034921690145238953/2128789257154560000)*n^6 - (394245218967404573/9855505820160000)*n^5 - (11421559789359613027/81307923016320000)*n^4 - (57003741297203/301945644000)*n^3 + (2875733400346871/11416863427200)*n^2 + (225454400125/1070845776)*n - 15

A223804 Number of 5Xn 0..3 arrays with rows and antidiagonals unimodal.

Original entry on oeis.org

1024, 1048576, 210163664, 13602542576, 453578376041, 9658691177678, 147492079608804, 1738265364563074, 16624933432537046, 133772722680020893, 930338345848608947, 5709392263061431701, 31428574139042436485
Offset: 1

Views

Author

R. H. Hardin Mar 27 2013

Keywords

Comments

Row 5 of A223801

Examples

			Some solutions for n=3
..0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0
..0..0..0....0..2..0....0..0..0....0..0..0....0..0..0....0..2..0....0..2..0
..2..2..1....1..2..0....0..0..0....1..0..0....2..0..0....3..2..2....0..2..1
..3..1..1....1..3..2....2..3..2....3..3..0....0..2..1....2..2..2....1..3..3
..1..2..0....3..1..0....1..3..2....3..0..0....3..1..1....1..1..1....2..2..1
		

Formula

Empirical: a(n) = (12185409283/15043832793341144432640000000)*n^30 + (76296730104643/884176199373970195454361600000)*n^29 + (371907650782571/65333216702510112964608000000)*n^28 + (1151102366842559/4355547780167340864307200000)*n^27 + (338234821790386273/36296231501394507202560000000)*n^26 + (357033935267827/1378774226073865420800000)*n^25 + (13631151365462522107/2345294958551645080780800000)*n^24 + (16740679506000614867/156352997236776338718720000)*n^23 + (119233024700630228357/72835247159988977664000000)*n^22 + (263813261261433287/12612164010387701760000)*n^21 + (64065941370817311811/285628420235250892800000)*n^20 + (8076987180619121371/3996447032098160640000)*n^19 + (5334961705848505741485791/348842499555736682496000000)*n^18 + (450858411768010052623451/4651233327409822433280000)*n^17 + (300491370965924162197759/586289915219725516800000)*n^16 + (17563968862511001347771/7817198869596340224000)*n^15 + (134531017813019228073534643/16611547597892222976000000)*n^14 + (33668222196298965216433/1419790392982241280000)*n^13 + (224429158876824166363763453/4025105764104654028800000)*n^12 + (12074189473194325363982201/115874256845437009920000)*n^11 + (10894534329021783625843566583/68283044212489666560000000)*n^10 + (44842282464981860911345889/227610147374965555200000)*n^9 + (500341840567104079760229311/2908351883124559872000000)*n^8 - (6956889324683760951709681/12118132846352332800000)*n^7 - (22335181829123680152688619197/9189584075150519040000000)*n^6 - (486619909336332713379638689/61263893834336793600000)*n^5 - (1635897124538888506513/525329221697280000)*n^4 - (35225574821544661546673/7293320694563904000)*n^3 + (382682859390107193527/9647249595984000)*n^2 - (11221241883754589/465817912560)*n - 377 for n>2

A223805 Number of 6Xn 0..3 arrays with rows and antidiagonals unimodal.

Original entry on oeis.org

4096, 16777216, 9169032476, 1216562667529, 70950413903439, 2401987689157097, 54863639440148543, 926152518399324838, 12281305845727356247, 133569446404885491509, 1229947638993873947499, 9824466906501135882300
Offset: 1

Views

Author

R. H. Hardin Mar 27 2013

Keywords

Comments

Row 6 of A223801

Examples

			Some solutions for n=3
..0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0
..0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0
..0..0..0....0..2..0....0..2..0....0..0..0....0..2..0....0..0..0....0..0..0
..3..2..1....1..2..3....1..2..1....0..0..3....0..2..2....1..2..1....2..2..2
..0..2..3....1..2..3....3..2..0....3..3..3....1..3..3....1..1..2....1..2..0
..0..0..1....1..2..1....1..3..1....2..2..3....3..3..0....1..1..0....0..1..3
		

Formula

Empirical: a(n) = (94871989966071037/12399777559663373915599981605027840000000)*n^36 + (23494487319688423/21753995718707673536140318605312000000)*n^35 + (19815461219045083483/196821866026402760565079073095680000000)*n^34 + (387946863583945231/57888784125412576636787962675200000)*n^33 + (1177484665113344641/3432141351309046045659365376000000)*n^32 + (615940986658681/43992616415246567217089740800)*n^31 + (249926773655883881424689/534749765381377174210797895680000000)*n^30 + (4630069145782751496907/356499843587584782807198597120000)*n^29 + (178133742871226319480781/585385621654490612162887680000000)*n^28 + (6962809860198885640273/1147814944420569827770368000000)*n^27 + (666626499383242550268556343/6439241838199396733791764480000000)*n^26 + (522351494242690781724431/343976593920907945181184000000)*n^25 + (259385049672212475250399091383/13522407860218733140962705408000000)*n^24 + (94069937609216051584228677343/450746928673957771365423513600000)*n^23 + (150606744114958980477692573/77125905356322873802752000000)*n^22 + (60407333375536982936116523/3856295267816143690137600000)*n^21 + (18552609924642994134467759158073/173070531619588528813375488000000)*n^20 + (398421495171448567208594349137/641001968961438995605094400000)*n^19 + (32999625284514089244451420058951999/10903443492034077315242655744000000)*n^18 + (3444424661623804094160490174561/281306591641746060764774400000)*n^17 + (813052700533005951081065902821133/19997645460246573707427840000000)*n^16 + (95627195506301062688987740160173/874896988885787599699968000000)*n^15 + (283794291443517721003321123962583391/1207357844662386887585955840000000)*n^14 + (20165452979436273060452527083533/51596489088136191777177600000)*n^13 + (65311515436625900041815166858211147/115247794263227839269568512000000)*n^12 + (2590786840107227108334729278011/10271639417399985674649600000)*n^11 + (330914440339976752306544596432769/198840224746769909022720000000)*n^10 - (36168405113352687550265305231771/2540736205097615504179200000)*n^9 - (4359271111022264447540327478101011/1228022499130514160353280000000)*n^8 - (1695820430249495689620665968078387/5116760413043809001472000000)*n^7 + (7268239430782963931795377473941916839/30534267764838930216284160000000)*n^6 - (139344733258938107220685649337424153/63613057843414437950592000000)*n^5 + (47437635676535991526724411394898871/8239405587337489105981440000)*n^4 - (238200143499847388140289435527/18790835585060867328000)*n^3 + (14071590518507157155692107883/589755662301693888000)*n^2 - (635163845155509650059/16044839210400)*n + 20888560 for n>3
Showing 1-10 of 11 results. Next