cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A223807 Number of nX3 0..3 arrays with rows, columns, diagonals and antidiagonals unimodal.

Original entry on oeis.org

50, 2500, 58806, 825896, 8165133, 62305953, 388531932, 2057610878, 9513089522, 39201336756, 146317003838, 501049337826, 1590725248238, 4722687426852, 13206968194237, 35002231000213, 88376951307032, 213545507535686
Offset: 1

Views

Author

R. H. Hardin Mar 27 2013

Keywords

Comments

Column 3 of A223811

Examples

			Some solutions for n=3
..2..2..1....0..3..3....0..3..3....1..2..0....0..0..0....0..0..1....2..0..0
..3..3..1....2..3..3....1..1..3....1..2..0....0..3..3....1..3..3....2..2..3
..0..2..1....3..3..0....0..1..2....3..2..0....1..3..3....1..2..2....2..3..3
		

Formula

Empirical: a(n) = (89/169374965760)*n^18 + (838301/44460928512000)*n^17 + (131561/298896998400)*n^16 + (2899703/435891456000)*n^15 + (20728921/261534873600)*n^14 + (44295233/62270208000)*n^13 + (61053571/11496038400)*n^12 + (1555111843/50295168000)*n^11 + (157620907/1045094400)*n^10 + (3423292861/6096384000)*n^9 + (56948336183/32188907520)*n^8 + (18757539769/4790016000)*n^7 + (288950150603/37362124800)*n^6 + (2420059673699/326918592000)*n^5 + (12916777153/889574400)*n^4 + (2892057797/4540536000)*n^3 + (22972148831/1029188160)*n^2 - (1109957/29172)*n + 29

A223808 Number of nX4 0..3 arrays with rows, columns, diagonals and antidiagonals unimodal.

Original entry on oeis.org

130, 16900, 825896, 20847008, 342521725, 4146732319, 39816673636, 317796753758, 2176384736806, 13081738670880, 70201100137308, 340874317119700, 1514107865155566, 6208541401894070, 23684173752732531, 84617914222910737
Offset: 1

Views

Author

R. H. Hardin Mar 27 2013

Keywords

Comments

Column 4 of A223811

Examples

			Some solutions for n=3
..0..0..2..3....0..0..3..0....0..1..2..0....0..0..3..0....1..1..1..2
..0..1..1..3....0..2..3..0....1..2..2..2....0..1..3..2....1..2..2..2
..0..0..1..1....1..1..1..3....0..0..3..0....0..3..3..2....0..3..3..1
		

Formula

Empirical: a(n) = (1224989653/34469355651846635520000)*n^24 + (9790897789/8617338912961658880000)*n^23 + (17368054339/449600291111043072000)*n^22 + (6343785587/8515157028618240000)*n^21 + (742042863307/58389648196239360000)*n^20 + (874268046919/4865804016353280000)*n^19 + (340257615613/179266463760384000)*n^18 + (9655773652423/448166159400960000)*n^17 + (216017366507863/1265410332426240000)*n^16 + (127305463223041/105450861035520000)*n^15 + (2176033515218659/198850195095552000)*n^14 + (1092716136330817/41427123978240000)*n^13 + (121113866805425089/515537542840320000)*n^12 + (342583305621940841/105450861035520000)*n^11 - (2450919674438782711/63270516621312000)*n^10 + (11061596378517660259/26362715258880000)*n^9 - (547858838894740099247/192071211171840000)*n^8 + (217452379672611043021/16005934264320000)*n^7 - (15434864255601855529021/425757851430912000)*n^6 - (981113327920619121617/59133034920960000)*n^5 + (97554150097562928884627/162615846032640000)*n^4 - (2213625571607144902901/903421366848000)*n^3 + (32215709819070912077/7420961227680)*n^2 - (118869402789119/74364290)*n - 3422935 for n>8

A223809 Number of nX5 0..3 arrays with rows, columns, diagonals and antidiagonals unimodal.

Original entry on oeis.org

296, 87616, 8165133, 342521725, 8597979566, 151474085262, 2058985931297, 22901512677629, 216485354275124, 1784167200609912, 13053474850518508, 85927775923343738, 514305111112459789, 2823064297778339125
Offset: 1

Views

Author

R. H. Hardin Mar 27 2013

Keywords

Comments

Column 5 of A223811

Examples

			Some solutions for n=3
..0..0..0..0..0....0..0..0..1..0....0..0..0..0..3....0..0..2..2..1
..0..2..1..1..1....0..0..3..3..0....0..0..0..3..2....0..0..3..2..1
..0..0..0..1..0....0..2..2..2..2....0..0..3..2..1....0..0..2..2..2
		

Formula

Empirical: a(n) = (12185409283/15043832793341144432640000000)*n^30 + (65289291955553/4420880996869850977271808000000)*n^29 + (21718473047041/19884022474676990902272000000)*n^28 + (2120108278451/127355198250507042816000000)*n^27 + (15561105953549293/36296231501394507202560000000)*n^26 + (289358623979/26564081706860544000000)*n^25 + (46195046293174813/2345294958551645080780800000)*n^24 + (2895943411744833937/781764986183881693593600000)*n^23 - (1934558843887147381/509846730119922843648000000)*n^22 + (48760416035116711/147141913454523187200000)*n^21 + (21826875298852452953/4855683143999265177600000)*n^20 - (156850672232660797/13601353344535756800000)*n^19 - (81113944137104012165989/348842499555736682496000000)*n^18 + (24830083604445741151639/930246665481964486656000)*n^17 - (2812142506870759694352953/4104029406538078617600000)*n^16 + (97155764191026540631493/5922120355754803200000)*n^15 - (6012916017623459423535490877/16611547597892222976000000)*n^14 + (42676596532256238158237909/6084815969923891200000)*n^13 - (451076788569987755746145023843/4025105764104654028800000)*n^12 + (1675232798260911600311989982501/1158742568454370099200000)*n^11 - (7157215149697402554044186072517719/477981309487427665920000000)*n^10 + (552107030494681804261361610031/4436844978069504000000)*n^9 - (2415940983456589943036911811427841/2908351883124559872000000)*n^8 + (103326033975482855639269665005533/23082157802575872000000)*n^7 - (7877089396965831951756259428407549/399547133702196480000000)*n^6 + (10172973554483534081526630673099/140642547829056000000)*n^5 - (34242481981306851689859252316747/153159734585841984000)*n^4 + (27230471296744908127446139183/47668762709568000)*n^3 - (2769560342993078431580752847/2411812398996000)*n^2 + (18165979496961348183233/10782822050)*n - 1410583198450 for n>15

A223810 Number of nX6 0..3 arrays with rows, columns, diagonals and antidiagonals unimodal.

Original entry on oeis.org

610, 372100, 62305953, 4146732319, 151474085262, 3678996027680, 66795003874023, 975436194200049, 12003684951893750, 128311788458764246, 1215992796769138594
Offset: 1

Views

Author

R. H. Hardin Mar 27 2013

Keywords

Comments

Column 6 of A223811

Examples

			Some solutions for n=3
..0..0..0..2..3..1....0..0..0..1..3..2....0..0..0..2..2..1....0..0..0..1..2..0
..0..0..0..2..2..1....0..0..0..3..3..0....0..0..0..1..0..0....0..0..0..2..3..3
..0..0..0..0..2..2....0..0..1..1..1..0....0..0..0..0..0..0....0..0..0..2..0..0
		
Showing 1-4 of 4 results.