cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A223759 Number of nX5 0..3 arrays with rows, antidiagonals and columns unimodal.

Original entry on oeis.org

296, 87616, 9478535, 499583168, 15947472102, 350182483445, 5733827943118, 73972033945807, 782389879664731, 6990377642784235, 54000675009376965, 367428839857095864, 2235505630899285226, 12314718611480572990
Offset: 1

Views

Author

R. H. Hardin Mar 27 2013

Keywords

Comments

Column 5 of A223762

Examples

			Some solutions for n=3
..0..0..1..2..1....0..0..0..2..1....0..2..1..1..1....0..2..3..1..1
..0..0..2..3..1....0..0..2..2..3....0..0..0..3..2....0..0..2..3..3
..0..1..3..1..1....0..2..3..1..1....0..0..0..3..0....0..0..2..2..0
		

Formula

Empirical: a(n) = (12185409283/15043832793341144432640000000)*n^30 + (27923308904923/552610124608731372158976000000)*n^29 + (17202351123943/7559215155662327119872000000)*n^28 + (83889482659651/1146196784254563385344000000)*n^27 + (131580424853251541/72592463002789014405120000000)*n^26 + (91300610653453/2481793606932957757440000)*n^25 + (2869131224226844253/4690589917103290161561600000)*n^24 + (6733459014124696993/781764986183881693593600000)*n^23 + (105395815298504753443/1019693460239845687296000000)*n^22 + (470586110891157493/441425740363569561600000)*n^21 + (92313858824481506713/9711366287998530355200000)*n^20 + (40366817013100567291/539520349333251686400000)*n^19 + (2857208469478310355787/5765991728193994752000000)*n^18 + (73804544320284819569293/23256166637049112166400000)*n^17 + (105623541268201591322087/8208058813076157235200000)*n^16 + (20778860285663090466941/195429971739908505600000)*n^15 - (4122006232669364727200509/33223095195784445952000000)*n^14 + (14082517009271704071311/3155089762182758400000)*n^13 - (182553094899048464076429353/8050211528209308057600000)*n^12 + (351832338444643788138816403/2317485136908740198400000)*n^11 - (636192073310304596009591323513/955962618974855331840000000)*n^10 + (673686037713545840541517207/239589628815753216000000)*n^9 - (507622569326119951528072091/48071931952472064000000)*n^8 + (33298798403375782384332287329/969450627708186624000000)*n^7 - (2608160997837482966479278684073/36758336300602076160000000)*n^6 + (3318743520542516326928702347/122527787668673587200000)*n^5 + (519721318997776322417985167/6126389383433679360000)*n^4 + (8189409887763024441897379/7293320694563904000)*n^3 - (52484216692264826985673/9647249595984000)*n^2 + (2840122633336908109/465817912560)*n + 2746822 for n>5