cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A223785 Number of nX4 0..2 arrays with rows, diagonals and antidiagonals unimodal.

Original entry on oeis.org

46, 2116, 62365, 1560013, 39387861, 1026135371, 27088106846, 715394830136, 18858304684055, 496722962933967, 13083748459268997, 344674592599166771, 9080493561769780564, 239226142956291614446, 6302367997324565980625
Offset: 1

Views

Author

R. H. Hardin Mar 27 2013

Keywords

Comments

Column 4 of A223789

Examples

			Some solutions for n=3
..0..0..2..1....1..2..1..1....0..1..2..1....0..2..2..0....0..1..1..1
..1..2..2..1....0..1..2..1....2..1..1..0....0..0..1..0....0..2..2..0
..0..2..1..0....0..1..1..1....1..2..2..2....0..2..1..1....0..0..0..0
		

Formula

Empirical: a(n) = 36*a(n-1) -189*a(n-2) -3541*a(n-3) +59127*a(n-4) -226113*a(n-5) -2332737*a(n-6) +9857697*a(n-7) +99543550*a(n-8) +95675691*a(n-9) -5724165128*a(n-10) +5396730978*a(n-11) +117801963183*a(n-12) +48822212002*a(n-13) -4050581859555*a(n-14) -9385185579247*a(n-15) +93974968759615*a(n-16) +418814395559996*a(n-17) -398631629899971*a(n-18) -8857200756180654*a(n-19) -17297999616825626*a(n-20) +61168241169556772*a(n-21) +315463283515803651*a(n-22) +213887059257798310*a(n-23) -1903664148042753413*a(n-24) -3584708139929595584*a(n-25) +1714913055484581266*a(n-26) +11096777221831756444*a(n-27) -7609600734685922241*a(n-28) -49783583957613699145*a(n-29) +229513376763785174005*a(n-30) +180988649676924655797*a(n-31) -501542105212285553370*a(n-32) -325246768938962167438*a(n-33) +1501252528314140198120*a(n-34) +5802160737866727525882*a(n-35) -16205743701771553347998*a(n-36) -12947461293194280857390*a(n-37) -36099351841893292475137*a(n-38) +81150506478189926731033*a(n-39) +315683614302924768396043*a(n-40) -678254108759024930127839*a(n-41) -174717381067845210519994*a(n-42) +1334495710753290909569152*a(n-43) +221178153601308790024930*a(n-44) -483252100375673175449627*a(n-45) -2714447412869195417032469*a(n-46) +1574170270974397211830313*a(n-47) +753869711211526732155023*a(n-48) -5395070252732438366552504*a(n-49) +4757066470991903272143408*a(n-50) +8876390245281412619998437*a(n-51) -1877127082673826201189221*a(n-52) -12865570823541965542911108*a(n-53) +2207607579231775223357612*a(n-54) +13699987590118569137971332*a(n-55) -9938636241626662896298108*a(n-56) -16701218412807619111473012*a(n-57) +8284692714173402914397700*a(n-58) +16110317416374339328207960*a(n-59) -4384172067171970298981184*a(n-60) -6240892805930542467867088*a(n-61) +6453778250708127079582832*a(n-62) +1554531273179700190700896*a(n-63) -3413324636388770330606720*a(n-64) -34723774750877869086976*a(n-65) -189654079977746620978816*a(n-66) -1002029019037833715250176*a(n-67) -163481539387725950018304*a(n-68) +145241176478505601837056*a(n-69) +105485623837957432606720*a(n-70) +101928363962749438431232*a(n-71) +53672511863761575182336*a(n-72) +11193681570052043833344*a(n-73) +225784053502893359104*a(n-74) -316491621666724773888*a(n-75) -131089967696959242240*a(n-76) -46043707372770164736*a(n-77) -9232452487045185536*a(n-78) -858153604115070976*a(n-79) -26310763496865792*a(n-80)