A223792 Number of 5Xn 0..2 arrays with rows, diagonals and antidiagonals unimodal.
243, 59049, 2703137, 39387861, 343454446, 2226551034, 11992802966, 57005353680, 246381084601, 983376748824, 3659208824870, 12782748762891, 42154099154095, 131837732493171, 392589737558511, 1116957062770205, 3045559149318525
Offset: 1
Keywords
Examples
Some solutions for n=3 ..0..0..1....0..0..0....0..0..1....0..0..1....0..0..1....0..0..1....0..0..0 ..2..0..0....2..0..0....0..0..2....0..1..0....1..1..1....0..1..0....1..0..0 ..0..2..2....0..1..1....0..0..0....0..1..0....0..1..1....0..1..1....0..1..1 ..1..2..0....0..1..0....0..0..2....0..2..0....0..1..2....0..2..2....1..1..1 ..0..1..1....2..1..0....1..2..2....2..2..2....1..2..0....0..2..0....0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..103
Formula
Empirical: a(n) = (63370093/405483668029440000)*n^20 - (268330757/121645100408832000)*n^19 + (43030249/328326856704000)*n^18 - (5473141/17072996548608)*n^17 - (2435352473/69742632960000)*n^16 + (170082680039/62768369664000)*n^15 - (9040480367419/125536739328000)*n^14 + (52864434956213/37661021798400)*n^13 - (1853752694469833/96566722560000)*n^12 + (2309334348058723/9656672256000)*n^11 - (7549354911696211/2145927168000)*n^10 + (117446496741518107/1931334451200)*n^9 - (140966223776288630033/156920924160000)*n^8 + (91382436096707306951/9415255449600)*n^7 - (86620685132489250907/1207084032000)*n^6 + (58712885643301237303/174356582400)*n^5 - (288444549825617915291/343062720000)*n^4 + (167215711426064855461/308756448000)*n^3 - (1138388070473741029/24443218800)*n^2 + (154082848393578809/16628040)*n - 14652081349 for n>15
Comments