cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A223830 Number of nX7 0..2 arrays with rows and columns unimodal.

Original entry on oeis.org

239, 57121, 5995781, 320423509, 10278415020, 222531132820, 3529435151262, 43488595659874, 434747752662172, 3644070166673656, 26274461520805174, 166299611386240948, 939231697288055902, 4797427977710396544
Offset: 1

Views

Author

R. H. Hardin Mar 27 2013

Keywords

Comments

Column 7 of A223831

Examples

			Some solutions for n=3
..0..0..0..1..2..1..0....0..0..0..1..1..1..0....0..0..0..0..0..0..2
..0..0..0..1..2..2..0....0..0..0..2..2..1..1....0..0..0..0..1..1..1
..0..0..1..2..2..0..0....0..0..1..1..2..1..0....0..0..0..0..1..1..1
		

Formula

Empirical: a(n) = (1296893401129/16938241367317436694528000000)*n^28 + (72703874510633/10888869450418352160768000000)*n^27 + (2880100345513/9489210850037779660800000)*n^26 + (861351630970627/93067260259985915904000000)*n^25 + (864800892388079/4136322678221596262400000)*n^24 + (2565528977681/696064173067468800000)*n^23 + (7905645181522433/151065697813310472192000)*n^22 + (12259447555207963/20064806380162252800000)*n^21 + (7483863495580993/1257623191919001600000)*n^20 + (3594050229364987331/73570956727261593600000)*n^19 + (49600789259036297/145619527485358080000)*n^18 + (86423411955717683177/42593711789467238400000)*n^17 + (1576780142566456509281/152001089131039948800000)*n^16 + (4463809610643909458677/97714985869954252800000)*n^15 + (251513003138559503557/1447629420295618560000)*n^14 + (130199265024314377939/227773859836723200000)*n^13 + (3852138142774912177207/2366317321637068800000)*n^12 + (298748214070779120271/74464531100467200000)*n^11 + (6476410200562687124239/757348083957104640000)*n^10 + (651582375522581245546751/41383663159084646400000)*n^9 + (81109174434756457340257/3242309791666176000000)*n^8 + (42338611909424523333083/1239706685048832000000)*n^7 + (8270024422491842435867/207147570023116800000)*n^6 + (132002526325134509056651/3366148012875648000000)*n^5 + (2188638685226111310011/68070993149263104000)*n^4 + (249241188258236233/11839806322344000)*n^3 + (742497212342827/64314997306560)*n^2 + (84445539769/20078358300)*n + 1