A223836 Number of n X 6 0..1 arrays with rows, diagonals and antidiagonals unimodal and columns nondecreasing.
22, 148, 503, 1286, 2884, 5992, 11749, 21912, 39064, 66854, 110269, 175938, 272468, 410812, 604669, 870916, 1230072, 1706794, 2330405, 3135454, 4162308, 5457776, 7075765, 9077968, 11534584, 14525070, 18138925, 22476506, 27649876, 33783684
Offset: 1
Keywords
Examples
Some solutions for n=3: ..0..0..0..0..0..1....0..1..1..0..0..0....0..0..0..0..0..0....0..0..0..1..1..0 ..0..0..1..1..1..1....1..1..1..1..0..0....0..1..0..0..0..0....0..0..0..1..1..0 ..1..1..1..1..1..1....1..1..1..1..1..1....1..1..1..1..1..1....0..0..1..1..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 6 of A223838.
Formula
Empirical: a(n) = (2/45)*n^6 + (55/36)*n^4 + (14/3)*n^3 + (3767/180)*n^2 + (293/6)*n - 116 for n>3.
Conjectures from Colin Barker, Aug 23 2018: (Start)
G.f.: x*(22 - 6*x - 71*x^2 + 103*x^3 + 35*x^4 - 77*x^5 + 10*x^6 + 22*x^7 - 4*x^8 - 2*x^9) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>10.
(End)
Extensions
Name corrected by Andrew Howroyd, Mar 18 2025