A223837 Number of n X 7 0..1 arrays with rows, diagonals and antidiagonals unimodal and columns nondecreasing.
29, 239, 926, 2578, 6159, 13582, 28369, 56607, 108282, 199047, 352486, 602938, 998945, 1607388, 2518375, 3850945, 5759652, 8442093, 12147444, 17186068, 23940259, 32876186, 44557101, 59657875, 78980926, 103473603, 134247090, 172596894, 220024981, 278263624, 349301027
Offset: 1
Keywords
Examples
Some solutions for n=3: ..0..0..0..1..1..1..0....0..0..0..0..0..0..0....0..1..0..0..0..0..0 ..0..0..1..1..1..1..0....0..0..1..1..0..0..0....0..1..1..1..0..0..0 ..1..1..1..1..1..1..1....0..1..1..1..1..1..1....1..1..1..1..1..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 7 of A223838.
Formula
Empirical: a(n) = (4/315)*n^7 - (1/45)*n^6 + (28/45)*n^5 + (113/72)*n^4 + (2137/180)*n^3 + (14023/360)*n^2 + (13159/140)*n - 339 for n>4.
Conjectures from Colin Barker, Aug 23 2018: (Start)
G.f.: x*(29 + 7*x - 174*x^2 + 238*x^3 + 109*x^4 - 256*x^5 + 45*x^6 + 111*x^7 - 27*x^8 - 26*x^9 + 6*x^10 + 2*x^11) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>12.
(End)
Extensions
Name corrected by Andrew Howroyd, Mar 18 2025