cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A223837 Number of n X 7 0..1 arrays with rows, diagonals and antidiagonals unimodal and columns nondecreasing.

Original entry on oeis.org

29, 239, 926, 2578, 6159, 13582, 28369, 56607, 108282, 199047, 352486, 602938, 998945, 1607388, 2518375, 3850945, 5759652, 8442093, 12147444, 17186068, 23940259, 32876186, 44557101, 59657875, 78980926, 103473603, 134247090, 172596894, 220024981, 278263624, 349301027
Offset: 1

Views

Author

R. H. Hardin, Mar 27 2013

Keywords

Examples

			Some solutions for n=3:
..0..0..0..1..1..1..0....0..0..0..0..0..0..0....0..1..0..0..0..0..0
..0..0..1..1..1..1..0....0..0..1..1..0..0..0....0..1..1..1..0..0..0
..1..1..1..1..1..1..1....0..1..1..1..1..1..1....1..1..1..1..1..1..1
		

Crossrefs

Column 7 of A223838.

Formula

Empirical: a(n) = (4/315)*n^7 - (1/45)*n^6 + (28/45)*n^5 + (113/72)*n^4 + (2137/180)*n^3 + (14023/360)*n^2 + (13159/140)*n - 339 for n>4.
Conjectures from Colin Barker, Aug 23 2018: (Start)
G.f.: x*(29 + 7*x - 174*x^2 + 238*x^3 + 109*x^4 - 256*x^5 + 45*x^6 + 111*x^7 - 27*x^8 - 26*x^9 + 6*x^10 + 2*x^11) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>12.
(End)

Extensions

Name corrected by Andrew Howroyd, Mar 18 2025