A223839 Number of 3 X n 0..1 arrays with rows, diagonals and antidiagonals unimodal and columns nondecreasing.
4, 16, 48, 118, 255, 503, 926, 1614, 2690, 4318, 6712, 10146, 14965, 21597, 30566, 42506, 58176, 78476, 104464, 137374, 178635, 229891, 293022, 370166, 463742, 576474, 711416, 871978, 1061953, 1285545, 1547398, 1852626, 2206844, 2616200, 3087408, 3627782, 4245271
Offset: 1
Keywords
Examples
Some solutions for n=3: ..1..1..0....0..0..0....0..1..0....1..0..0....1..0..0....0..1..0....0..1..1 ..1..1..0....0..1..0....0..1..0....1..1..1....1..1..0....0..1..1....0..1..1 ..1..1..1....0..1..0....1..1..0....1..1..1....1..1..0....1..1..1....0..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Row 3 of A223838.
Formula
Empirical: a(n) = (1/720)*n^6 + (1/240)*n^5 + (29/144)*n^4 + (11/48)*n^3 + (1007/360)*n^2 - (37/30)*n + 2.
Conjectures from Colin Barker, Aug 23 2018: (Start)
G.f.: x*(2 - 2*x + x^2)*(2 - 4*x + 5*x^2 - 4*x^3 + 2*x^4) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)
Extensions
Name corrected by Andrew Howroyd, Mar 18 2025