cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A223840 Number of 4 X n 0..1 arrays with rows, diagonals and antidiagonals unimodal and columns nondecreasing.

Original entry on oeis.org

5, 25, 89, 249, 596, 1286, 2578, 4886, 8851, 15439, 26072, 42800, 68523, 107273, 164567, 247843, 366992, 535000, 768715, 1089755, 1525574, 2110704, 2888192, 3911252, 5245153, 6969365, 9179986, 11992474, 15544709, 20000411, 25552941, 32429513, 40895846, 51261286
Offset: 1

Views

Author

R. H. Hardin, Mar 27 2013

Keywords

Examples

			Some solutions for n=3:
..0..0..0....0..1..0....0..0..0....0..1..0....0..0..0....0..0..0....0..0..0
..0..0..0....0..1..0....0..0..0....0..1..1....0..0..0....0..0..1....0..0..0
..0..0..0....0..1..0....1..0..0....1..1..1....0..0..0....0..0..1....0..1..0
..0..0..1....1..1..1....1..1..0....1..1..1....0..1..1....0..1..1....0..1..0
		

Crossrefs

Row 4 of A223838.

Formula

Empirical: a(n) = (1/40320)*n^8 - (1/10080)*n^7 + (19/2880)*n^6 + (7/180)*n^5 + (527/5760)*n^4 + (3683/1440)*n^3 + (4051/10080)*n^2 - (1707/280)*n + 13 for n>2.
Conjectures from Colin Barker, Aug 24 2018: (Start)
G.f.: x*(5 - 20*x + 44*x^2 - 72*x^3 + 89*x^4 - 70*x^5 + 28*x^6 - 4*x^7 + 4*x^8 - 4*x^9 + x^10) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>11.
(End)

Extensions

Name corrected by Andrew Howroyd, Mar 20 2025