A223840 Number of 4 X n 0..1 arrays with rows, diagonals and antidiagonals unimodal and columns nondecreasing.
5, 25, 89, 249, 596, 1286, 2578, 4886, 8851, 15439, 26072, 42800, 68523, 107273, 164567, 247843, 366992, 535000, 768715, 1089755, 1525574, 2110704, 2888192, 3911252, 5245153, 6969365, 9179986, 11992474, 15544709, 20000411, 25552941, 32429513, 40895846, 51261286
Offset: 1
Keywords
Examples
Some solutions for n=3: ..0..0..0....0..1..0....0..0..0....0..1..0....0..0..0....0..0..0....0..0..0 ..0..0..0....0..1..0....0..0..0....0..1..1....0..0..0....0..0..1....0..0..0 ..0..0..0....0..1..0....1..0..0....1..1..1....0..0..0....0..0..1....0..1..0 ..0..0..1....1..1..1....1..1..0....1..1..1....0..1..1....0..1..1....0..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Row 4 of A223838.
Formula
Empirical: a(n) = (1/40320)*n^8 - (1/10080)*n^7 + (19/2880)*n^6 + (7/180)*n^5 + (527/5760)*n^4 + (3683/1440)*n^3 + (4051/10080)*n^2 - (1707/280)*n + 13 for n>2.
Conjectures from Colin Barker, Aug 24 2018: (Start)
G.f.: x*(5 - 20*x + 44*x^2 - 72*x^3 + 89*x^4 - 70*x^5 + 28*x^6 - 4*x^7 + 4*x^8 - 4*x^9 + x^10) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>11.
(End)
Extensions
Name corrected by Andrew Howroyd, Mar 20 2025