cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A223869 Number of 6Xn 0..3 arrays with rows and antidiagonals unimodal and columns nondecreasing.

Original entry on oeis.org

84, 7056, 303560, 8008548, 145947740, 1989679315, 21476594002, 191485393983, 1457018264594, 9708014658466, 57822416245144, 313064200874351, 1561981122439360, 7262269235529104, 31752205659432881, 131516275822916936
Offset: 1

Views

Author

R. H. Hardin Mar 28 2013

Keywords

Comments

Row 6 of A223864

Examples

			Some solutions for n=3
..0..0..0....0..0..0....0..0..0....0..0..0....0..2..1....0..2..3....0..0..0
..2..0..0....0..2..1....1..2..0....1..2..0....0..2..1....0..2..3....0..0..0
..2..3..1....2..3..2....1..2..1....2..2..1....0..2..2....0..3..3....1..0..0
..2..3..1....3..3..2....1..3..1....2..2..1....0..2..2....1..3..3....1..2..0
..2..3..1....3..3..2....1..3..2....2..2..1....3..2..2....2..3..3....1..2..0
..3..3..2....3..3..3....2..3..2....3..2..1....3..3..3....2..3..3....3..2..0
		

Formula

Empirical: a(n) = (1/48569119454267387884339200000000)*n^36 + (1/385469202017995141939200000000)*n^35 + (509/2294879094136521281765376000000)*n^34 + (45072673/3373472268380686284195102720000000)*n^33 + (98970929/155735580571551568517529600000000)*n^32 + (15657172481/622942322286206274070118400000000)*n^31 + (72553007/84245463642710408822784000000)*n^30 + (9224227575469/353670479749588078181744640000000)*n^29 + (259388109101239/365866013534056632601804800000000)*n^28 + (1069067947427789/60977668922342772100300800000000)*n^27 + (324068662301467/813035585631236961337344000000)*n^26 + (1050857599757983/125082397789421070974976000000)*n^25 + (3359228653373591/20330730290850174074880000000)*n^24 + (59499006518000473/19544124654597042339840000000)*n^23 + (328837729476779/6275036678399050383360000)*n^22 + (15779074497679499/19015262661815304192000000)*n^21 + (2751358950432231398341/235662488588764336619520000000)*n^20 + (50435698940805547445789/353493732883146504929280000000)*n^19 + (441377463056670747803689/296934735621843064140595200000)*n^18 + (1873830568342196532829127/141397493153258601971712000000)*n^17 + (267354503696336902783274977/2651202996623598786969600000000)*n^16 + (436422377507839553846644063/662800749155899696742400000000)*n^15 + (1125875946010062345791103079/304888344611713860501504000000)*n^14 + (2092746936332381279309322059/117264747927582254039040000000)*n^13 + (751942966419486002702371387/10125656687825770291200000000)*n^12 + (1974716117993688153795059/7436126973898022400000000)*n^11 + (1788367830018388939084527979/2198714023642167263232000000)*n^10 + (31107899679091365256605057767/14658093490947781754880000000)*n^9 + (211320747100198509737825012033/45147885997445373542400000000)*n^8 + (552453635986071137589553754293/63959505163047612518400000000)*n^7 + (32067365980652302617534655703/2434949582523040687104000000)*n^6 + (2243604186621342688240182563/137690601392671943616000000)*n^5 + (21949153806567016754942281/1376906013926719436160000)*n^4 + (391289317973804357849579/32783476522064748480000)*n^3 + (3883508589248023/569647119000960)*n^2 + (22960563482143/10314539492400)*n + 1