A223934 Least prime p such that x^n-x-1 is irreducible modulo p.
2, 2, 2, 3, 2, 2, 7, 2, 17, 7, 5, 3, 3, 2, 109, 3, 101, 19, 229, 5, 2, 23, 23, 17, 107, 269, 2, 29, 2, 31, 37, 197, 107, 73, 37, 7, 59, 233, 3, 3, 7, 43, 43, 5, 2, 47, 269, 61, 43, 3, 53, 13, 3, 643, 13, 5, 151, 59, 2
Offset: 2
Keywords
Examples
a(8)=7 since f(x)=x^8-x-1 is irreducible modulo 7 but reducible modulo any of 2, 3, 5, for, f(x)==(x^2+x+1)*(x^6+x^5+x^3+x^2+1) (mod 2), f(x)==(x^3+x^2-x+1)*(x^5-x^4-x^3-x^2+x-1) (mod 3), f(x)==(x^2-2x-2)*(x^6+2x^5+x^4+x^3-x^2-2) (mod 5).
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 2..500
- E. S. Selmer, On the irreducibility of certain trinomials, Math. Scand., 4 (1956) 287-302.
Crossrefs
Programs
-
Mathematica
Do[Do[If[IrreduciblePolynomialQ[x^n-x-1,Modulus->Prime[k]]==True,Print[n," ",Prime[k]];Goto[aa]],{k,1,PrimePi[n*(n+3)/2-1]}]; Print[n," ",counterexample];Label[aa];Continue,{n,2,100}]
Comments