cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A217788 Least integer s > p_n such that sum_{k=1}^n p_k*s^(n-k) (the number [p_1,...,p_n] in base s) is prime, where p_k denotes the k-th prime.

Original entry on oeis.org

3, 4, 8, 9, 16, 15, 72, 37, 30, 54, 54, 54, 80, 91, 78, 204, 182, 110, 286, 183, 158, 231, 228, 105, 252, 189, 198, 119, 178, 252, 280, 152, 164, 423, 170, 185, 190, 249, 1006, 249, 678, 200, 254, 480, 216, 234, 322, 601, 264, 301, 260, 269, 244, 308, 280, 364, 612, 635, 310, 420
Offset: 1

Views

Author

Zhi-Wei Sun, Mar 25 2013

Keywords

Comments

Conjecture: For any integers n >= m > 0, there are infinitely many positive integers s > p_n such that the number sum_{k=m}^n p_k*s^{n-k} (i.e., [p_m,...,p_n] in base s) is prime; moreover the smallest such an integer s (denoted by s(m,n)) does not exceed (n+1)*(m+n+1).
Note that s(1,n) = a(n) and s(4,21) = 546 < (21+1)*(21+4+1) = 572.
A related conjecture of the author states that for each n=2,3,... the polynomial sum_{k=1}^n p_k*x^(n-k) is irreducible modulo some prime. See also the author's comments on A000040.
The conjecture can be further extended as follows: If a_1 < ... < a_n are distinct integers with a_n prime, then there are infinitely many integers b > a_n such that [a_1,a_2,...,a_n] in base b is prime.
For example, [2,3,...,210,211] in base 55272 and[17,19,27,34,38,41] in base 300 are both prime.
See A224197 for a more general conjecture.

Examples

			a(3)=8 since 2*8^2+3*8+5=157 is prime but 2*6^2+3*6+5=95 and 2*7^2+3*7+5=124 are not.
		

Crossrefs

Programs

  • Mathematica
    A[n_,x_]:=A[n,x]=Sum[Prime[k]*x^(n-k),{k,1,n}]; Do[Do[If[PrimeQ[A[n,s]]==True, Print[n," ",s]; Goto[aa]], {s,Prime[n]+1, (n+1)(n+2)}]; Print[n," ",counterexample]; Label[aa]; Continue, {n,1,100}]

Extensions

Edited and added additional information by Zhi-Wei Sun, Mar 31 2013

A224210 Least prime p such that sum_{k=0}^n (k+1)^2*x^{n-k} is irreducible modulo p.

Original entry on oeis.org

2, 11, 7, 17, 11, 3, 7, 97, 3, 89, 31, 113, 43, 7, 23, 23, 17, 67, 23, 109, 17, 277, 103, 283, 59, 101, 157, 127, 29, 79, 23, 223, 73, 269, 433, 137, 5, 659, 109, 401, 419, 7, 373, 131, 89, 269, 149, 61, 829, 881
Offset: 1

Views

Author

Zhi-Wei Sun, Apr 01 2013

Keywords

Comments

Conjecture: a(n) does not exceed the (4n-3)-th prime for each n>0. Moreover, for any integers m>1 and n>0 the polynomial sum_{k=0}^n (k+1)^m*x^{n-k} is irreducible modulo some prime, and its Galois group over the rationals is isomorphic to the symmetric group S_n. Also, for m,n=2,3,... there are infinitely many integers b > n^m such that [n^m,...,2^m,1^m] in base b is prime.
We have a similar conjecture with the above (k+1)^m replaced by (2k+1)^m.

Examples

			a(3) = 7 since f(x) = x^3+4x^2+9x+16 is irreducible modulo 7 but reducible modulo any of 2, 3, 5. Note that
   f(x)==x*(x-1)^2 (mod 2),  f(x)==(x-1)*(x^2-x-1) (mod 3)
and
          f(x)==(x+1)*(x-1)^2 (mod 5).
		

Crossrefs

Programs

  • Mathematica
    A[n_,x_]:=Sum[(k+1)^2*x^(n-k),{k,0,n}]
    Do[Do[If[IrreduciblePolynomialQ[A[n,x],Modulus->Prime[k]]==True,Print[n," ",Prime[k]];Goto[aa]],{k,1,Prime[4n-3]}];
    Print[n," ",counterexample];Label[aa];Continue,{n,1,100}]

A224416 Least prime p such that the polynomial sum_{k=0}^n C_k*x^{n-k} is irreducible modulo p, where C_k denotes the Catalan number binomial(2k,k)/(k+1).

Original entry on oeis.org

2, 3, 2, 3, 17, 7, 47, 3, 53, 5, 137, 109, 79, 11, 37, 7, 59, 13, 53, 251, 251, 101, 467, 149, 79, 3, 83, 61, 239, 31, 79, 73, 73, 373, 199, 5, 337, 167, 17, 683, 523, 269, 37, 163, 431, 163, 163, 7, 487, 7, 167, 163, 197, 1549, 137, 503, 139, 263, 151, 283
Offset: 1

Views

Author

Zhi-Wei Sun, Apr 06 2013

Keywords

Comments

Conjecture: (i) a(n) does not exceed n^2+n+5 for each n>0, and the Galois group of sum_{k=0}^n C_k*x^{n-k} over the rationals is isomorphic to the symmetric group S_n.
(ii) For any positive integer n, the polynomial sum_{k=0}^n binomial(2k,k)*x^{n-k} is irreducible modulo some prime if and only if n is not of the form 2k(k+1), where k is a positive integer.
(iii) For any positive integer n, the polynomial sum_{k=0}^n T_k*x^{n-k} is irreducible modulo some prime not exceeding n^2+n+5, where T_k referes to the central trinomial coefficient A002426(k) which is the coefficient of x^k in the expansion of (x^2+x+1)^k.

Examples

			a(10) = 5 since sum_{k=0}^{10} C_k*x^{n-k} irreducible modulo 5 but reducible modulo any of 2 and 3.
Note also that a(11) = 137 coincides with 11^2+11+5.
		

Crossrefs

Programs

  • Mathematica
    A[n_,x_]:=A[n,x]=Sum[Binomial[2k,k]/(k+1)*x^(n-k),{k,0,n}]
    Do[Do[If[IrreduciblePolynomialQ[A[n,x],Modulus->Prime[k]]==True,Print[n," ",Prime[k]];Goto[aa]],{k,1,PrimePi[n^2+n+5]}];
    Print[n," ",counterexample];Label[aa];Continue,{n,1,100}]

A224417 Least prime p such that sum_{k=0}^n B_k*x^{n-k} is irreducible modulo p, where B_k refers to the Bell number A000110(k).

Original entry on oeis.org

2, 3, 2, 11, 3, 2, 193, 113, 2, 29, 71, 167, 19, 3, 7, 13, 199, 5, 101, 59, 13, 41, 3, 359, 7, 11, 2, 31, 197, 139, 3, 59, 2, 139, 83, 37, 23, 193, 587, 199, 67, 47, 401, 41, 571, 73, 1063, 229, 1163, 47, 53, 239, 347, 223, 577, 499, 271, 269, 11, 179
Offset: 1

Views

Author

Zhi-Wei Sun, Apr 06 2013

Keywords

Comments

Conjecture: a(n) < 4n^2-1 for all n>0.

Examples

			a(5) = 3 since the polynomial sum_{k=0}^5 B_5*x^{5-k} = x^5+x^4+2*x^3+5*x^2+15*x+52 is irreducible modulo 3 but reducible modulo 2.
Note also that a(7) = 193 < 4*7^2-1 = 195.
		

Crossrefs

Programs

  • Mathematica
    A[n_,x_]:=A[n,x]=Sum[BellB[k]*x^(n-k),{k,0,n}]
    Do[Do[If[IrreduciblePolynomialQ[A[n,x],Modulus->Prime[k]]==True,Print[n," ",Prime[k]];Goto[aa]],{k,1,PrimePi[4n^2-2]}];
    Print[n," ",counterexample];Label[aa];Continue,{n,1,100}]

A224418 Least prime q such that sum_{k=0}^n p(k)*x^{n-k} is irreducible modulo q, where p(k) refers to the partition number A000041(k).

Original entry on oeis.org

2, 3, 2, 11, 2, 13, 19, 19, 13, 29, 73, 47, 19, 43, 7, 59, 13, 29, 3, 13, 179, 29, 173, 19, 3, 163, 23, 3, 101, 71, 131, 977, 5, 157, 43, 13, 73, 2, 89, 197, 151, 151, 313, 3, 13, 31, 23, 97, 173, 241, 181, 109, 487, 157, 17, 29, 89, 109, 257, 317
Offset: 1

Views

Author

Zhi-Wei Sun, Apr 06 2013

Keywords

Comments

Conjecture: a(n) < n^2 for all n > 1.

Examples

			a(2) = 3 since sum_{k=0}^2 p(k)*x^{n-k} = x^2 + x + 2  is irreducible modulo 3 but reducible modulo 2.
		

Crossrefs

Programs

  • Mathematica
    A[n_,x_]:=A[n,x]=Sum[PartitionsP[k]*x^(n-k),{k,0,n}]
    Do[Do[If[IrreduciblePolynomialQ[A[n,x],Modulus->Prime[k]]==True,Print[n," ",Prime[k]];Goto[aa]],{k,1,PrimePi[Max[1,n^2-1]]}];
    Print[n," ",counterexample];Label[aa];Continue,{n,1,100}]

A224480 Least prime q such that x^n + sum_{k=1}^n p_k*x^{n-k} is irreducible modulo q, where p_k denotes the k-th prime.

Original entry on oeis.org

2, 11, 2, 2, 2, 2, 2, 53, 13, 3, 5, 2, 2, 2, 2, 421, 29, 19, 7, 2, 29, 37, 2, 743, 41, 23, 13, 47, 5, 2, 269, 139, 211, 31, 73, 307, 2, 2, 5, 89, 23, 839, 181, 379, 173, 89, 2, 353, 101, 307, 3, 29, 389, 2, 863, 71, 503, 619, 193, 2
Offset: 1

Views

Author

Zhi-Wei Sun, Apr 07 2013

Keywords

Comments

Conjecture: a(n) <= (n+4)*(n+5)+1 for all n>0.

Examples

			a(10) = 3 since P(x) = x^{10} + 2*x^9 + 3*x^8 + 5*x^7 + 7*x^6
+ 11*x^5 + 13*x^4 + 17*x^3 + 19*x^2 + 23*x + 29 is irreducible modulo 3, but reducible modulo 2, for,
    P(x)==(x+1)^2*(x^3+x+1)*(x^5+x^3+1) (mod 2).
Note also that a(16) = 421 = (16+4)*(16+5)+1.
		

Crossrefs

Programs

  • Mathematica
    A[n_,x_]:=A[n,x]=Sum[x^n+Prime[k]*x^(n-k),{k,1,n}]
    Do[Do[If[IrreduciblePolynomialQ[A[n,x],Modulus->Prime[k]]==True,Print[n," ",Prime[k]];Goto[aa]],{k,1,PrimePi[n^2+9n+21]}];
    Print[n," ",counterexample];Label[aa];Continue,{n,1,100}]

A220947 Least prime p such that sum_{k=0}^n F(k+1)*x^{n-k} is irreducible modulo p, where F(j) denotes the Fibonacci number A000045(j).

Original entry on oeis.org

2, 3, 2, 11, 3, 2, 5, 3, 2, 11, 5, 41, 181, 31, 73, 89, 5, 7, 71, 11, 29, 5, 193, 41, 89, 61, 2, 43, 3, 31, 13, 191, 2, 61, 103, 97, 103, 47, 383, 367, 89, 17, 191, 1627, 193, 163, 5, 337, 349, 23, 149, 193, 199, 233, 173, 617, 593, 59, 113, 151
Offset: 1

Views

Author

Zhi-Wei Sun, Apr 07 2013

Keywords

Comments

Conjecture: a(n) <= n^2+12 for all n>0.
Such a phenomenon happens quite often. In fact, for many interesting integer sequences a(k) (k=1,2,3,...), each of the polynomials x^n + sum_{k=0}^n a(k)*x^{n-k} (n>0) is irreducible modulo some prime not exceeding a*n^2+b*n+c, where a, b, c are suitable nonnegative constants.

Examples

			a(2) = 3 since x^2+x+2 is irreducible modulo 3 but reducible modulo 2.
Note also that a(13) = 181 = 13^2+12.
		

Crossrefs

Programs

  • Mathematica
    A[n_,x_]:=A[n,x]=Sum[Fibonacci[k+1]*x^(n-k),{k,0,n}]
    Do[Do[If[IrreduciblePolynomialQ[A[n,x],Modulus->Prime[k]]==True,Print[n," ",Prime[k]];Goto[aa]],{k,1,PrimePi[n^2+12]}];
    Print[n," ",counterexample];Label[aa];Continue,{n,1,100}]

A223942 Least prime q such that (x^{p_n}-1)/(x-1) is irreducible modulo q, where p_n is the n-th prime.

Original entry on oeis.org

2, 2, 2, 3, 2, 2, 3, 2, 5, 2, 3, 2, 7, 3, 5, 2, 2, 2, 2, 7, 5, 3, 2, 3, 5, 2, 5, 2, 11, 3, 3, 2, 3, 2, 2, 7, 5, 2, 5, 2, 2, 2, 19, 5, 2, 3, 2, 3, 2, 7, 3, 7, 7, 11, 3, 5, 2, 43, 5, 3
Offset: 1

Views

Author

Zhi-Wei Sun, Mar 29 2013

Keywords

Comments

It is well known that (x^{p^n}-1)/(x^{p^{n-1}}-1) is irreducible over the rationals for any prime p and positive integer n.
We have the following "Reciprocity Law": For any positive integer n and primes p > 2 and q, the cyclotomic polynomial (x^{p^n}-1)/(x^{p^{n-1}}-1) is irreducible modulo q if and only if q is a primitive root modulo p^n.
This can be proved as follows: As any monic irreducible polynomial over F_q=Z/qZ of degree k divides x^{q^k}-x in the ring F_q[x], the polynomial f(x)= (x^{p^n}-1)/(x^{p^{n-1}}-1) in F_q[x] has an irreducible factor of degree k < deg f if and only if f(x) is not coprime to x^{q^k}-x for some k < p^n-p^{n-1}. Note that gcd(x^{p^n}-1,x^{q^k-1}-1) = x^{gcd(p^n,q^k-1)}-1. If p^n | q^k-1, then x^{p^n}-1 | x^{q^k}-x and hence f(x) divides x^{q^k}-x; if p^n does not divide q^k-1, then gcd(x^{p^n}-1,x^{q^k-1}-1) divides x^{p^{n-1}}-1 and hence f(x) is coprime to x^{q^k}-x. Thus, f(x) is irreducible modulo q, if and only if p^n | q^k-1 for no 0 < k < p^n-p^{n-1}, i.e., q is a primitive root modulo p^n.
By the above "Reciprocity Law" in the case n=1, we have a(k) = A002233(k) for all k > 1.
Conjecture: a(n) <= sqrt(7*p_n) for all n>0.

Examples

			  a(9)=5 since f(x)=(x^{23}-1)/(x-1) is irreducible modulo 5, but reducible modulo either of 2 and 3, for,
   f(x)==(x^{11}+x^9+x^7+x^6+x^5+x+1)
         *(x^{11}+x^{10}+x^6+x^5+x^4+x^2+1) (mod 2)
and
   f(x)==(x^{11}-x^8-x^6+x^4+x^3-x^2-x-1)
         *(x^{11}+x^{10}+x^9-x^8-x^7+x^5+x^3-1) (mod 3).
		

Crossrefs

Programs

  • Mathematica
    Do[Do[If[IrreduciblePolynomialQ[Sum[x^k,{k,0,Prime[n]-1}],Modulus->Prime[k]]==True,Print[n," ",Prime[k]];Goto[aa]],{k,1,PrimePi[Sqrt[7*Prime[n]]]}];
    Print[n," ",counterexample];Label[aa];Continue,{n,1,100}]

A220949 Least prime p such that sum_{k=0}^n (2k+1)*x^(n-k) is irreducible modulo p.

Original entry on oeis.org

2, 2, 3, 2, 5, 3, 71, 23, 11, 2, 5, 2, 13, 23, 47, 47, 269, 2, 7, 19, 53, 101, 7, 53, 113, 11, 23, 2, 43, 347, 53, 283, 191, 17, 41, 2, 239, 677, 3, 281, 37, 641, 613, 41, 17, 269, 181, 137, 383, 41, 127, 2, 71, 739, 71, 353, 59, 2, 83, 2
Offset: 1

Views

Author

Zhi-Wei Sun, Apr 07 2013

Keywords

Comments

Conjecture: a(n) <= n^2+22 for all n>0.
We have similar conjectures with 2k+1 in the definition replaced by (2k+1)^m (m=2,3,...).

Examples

			a(5) = 5 since f(x) = x^5+3*x^4+5*x^3+7*x^2+9*x+11 is irreducible modulo 5, but f(x)==(x+1)*(x^2+x+1)^2 (mod 2) and f(x)==(x+1)^4*(x-1) (mod 3).
Note also that a(7) = 71 = 7^2+22.
		

Crossrefs

Programs

  • Mathematica
    A[n_,x_] := A[n,x] = Sum[(2k+1)*x^(n-k), {k,0,n}]; Do[Do[If[IrreduciblePolynomialQ[A[n,x], Modulus->Prime[k]] == True, Print[n," ",Prime[k]]; Goto[aa]], {k,1,PrimePi[n^2+22]}]; Print[n," ",counterexample]; Label[aa]; Continue,{n,1,100}]
Showing 1-9 of 9 results.