A223938 Numbers n such that the trinomial x^n-x-1 is irreducible over GF(3).
2, 3, 4, 5, 6, 13, 14, 17, 30, 40, 41, 51, 54, 73, 121, 137, 364, 446, 485, 638, 925, 1382, 1478, 2211, 2726, 5581, 5678, 6424, 8524, 10649, 15990, 17174, 18685, 18889, 27461, 29523, 30677, 39641, 42038, 58566, 71380, 72781, 82493
Offset: 1
Crossrefs
Cf. A002475 (n such that x^n-x-1 is irreducible over GF(2)).
Programs
-
Mathematica
Reap[ Do[ If[ Factor[x^n - x - 1, Modulus -> 3][[0]] =!= Times, Print[n]; Sow[n]], {n, 2, 3000}]][[2, 1]] (* Jean-François Alcover, Apr 03 2013 *) Select[Range[1000], IrreduciblePolynomialQ[x^# - x - 1, Modulus -> 3] &] (* Robert Price, Sep 19 2018 *)
-
PARI
for (n=1, 10^6, if ( polisirreducible(Mod(1, 3)*(x^n-x-1)), print1(n, ", ") ) );
-
Sage
P.
= GF(3)[] for n in range(10^6): if (x^n-x-1).is_irreducible(): print(n)
Extensions
a(35)-a(43) from Lucas A. Brown, Dec 11 2022
Comments